

Zano

Andrey N Sabelnikov

July 5th, 2019

v.1.1

Table of content
Hybrid PoS — PoW Consensus Mechanism 3

Classic Proof-of-Stake 3
Zano’s PoS Implementation 3
Design Considerations 4
Cumulative chain weighing 4

PoS power multiplication through PoW power problem 7

Aliases 8

Encrypted Attachments 8
Additional Data Fields 8
Encryption 9

Multi-Sig 10
Indexing 11
Consolidated Transaction Terms 12

Escrow 13
Escrow Proposal 15
Escrow Response 16

Difficulty Adjustment 17

Code Design 18

References 20

Zano leverages the proven and time-tested cryptographic primitives that were first introduced with CryptoNote.
Transactions are made both untraceable, and unlinkable by using stealth addresses and ring-signatures. As first
implemented in Boolberry, downstream sender privacy is guaranteed by using output flags.

Hybrid PoS — PoW Consensus Mechanism

Zano uses a hybrid PoS — PoW consensus mechanism. This makes double-spend attacks both unfeasible and
improbable. PoS was implemented to complement and enhance the security provided by traditional PoW blockchains.
With the ability to ”rent” hashing power, many PoW coins have been vulnerable to 51% attacks, as an attacker must only
have a sufficient amount of hashing power to rewrite the longest chain. This requires a certain investment and the
objective is to double spend the coins without regard to the impact of reputational damage, and consequent price decline.
However, in a 51% attack on a PoW coin, the attacker has no interest or concern regarding the coin’s value beyond the
initial attack. Similarly, pure PoS coins have their weaknesses. While there is an inherent disincentive to attack a network
that you have a financial interest in, pure PoS protocols face certain pitfalls such as ”nothing at stake”, ”stake grinding”,
among others. Proposed solutions include slashing, improving validator randomization, staking specific tokens, and
forgers, yet there remain a variety of challenges with each of them. Any attack on Zano’s hybrid parity protocol, would
require an attacker to obtain not only a majority of hashing power, but also a majority of the coins involved in staking. As
a result, the risk/reward profile shifts, such that a 51 % attack on a hybrid network has a negligible probability of
economic benefit.

Classic Proof-of-Stake
PoS mining is typically implemented such that a random coin owner obtains the right to sign a new block with their

secret key. The process of verification compromises full anonymity, because anyone can verify the signature using this
owner’s public key. Nevertheless, it is possible to preserve untraceability and unlinkability.

Zano’s PoS Implementation
Ring signatures allow the transaction creator to provide a set of possible public keys for signature verification, thus

keeping their identity indistinguishable from other users. The concept of an anonymous, secure PoS mechanism seemed
to be unachievable. The basis of PoS is a so-called ​kernel​, which is a data structure that depends on the transaction output
and includes:

• Current timestamp with 15-second granularity.

• Key Image, which corresponds to each transaction output. A ​keyimage is comprised of 32 pseudo-random bytes
derived from the key in such a way that it is impossible to reconstruct the key, given only its image.

• Stake Modifier. An additional 64 pseudo-random bytes derived from the last PoS and PoW blocks, which
disallows any predictability of the ​stakemodifier​ in the blocks ahead.

During mining, a user is allowed to sign a block, if ​Hash(kernel) < CoinAmount∗PosTarget​, where ​CoinAmount is
the amount of coins in a particular output, and ​PosTarget is an adaptive parameter that works to keep the block creation
rate constant.

The PoS miner iterates the timestamp (within the allowed boundaries) for each of their unspent outputs (UTXO)
and checks to see if they possess a UTXO that’s ​keyimage satisfies the ​PoSTarget formula above. In the event of a
”winning”​ result, they spend this particular output, anonymously, with a ring-signature.

Note: The signature includes the ​keyimage (used in the kernel), but not the key itself, which is why it does not
compromise anonymity. The miner signs both the transaction and the block and broadcasts the new block to the network.

Design Considerations
Here are some of the factors that were incorporated in our design decisions:

a. ​Kernel Structure: Unlike the classic PoS where the kernel includes a direct link to the winning output, an
anonymous transaction system (Zano) cannot use this approach, since it compromises privacy. This data was
replaced with a ​keyimage​, which literally is a hash of an output public key. Thus, the key image contains 32
bytes of pseudo-random data related to the ​winning​ output.

b. ​Stake Modifier: The purpose of ​stakemodifier is to make the kernel unpredictable, thereby protecting it from
machinations. The ​stakemodifier is recalculated for each new block. The value is the concatenation of the last
known PoS block’s kernel hash and the last known PoW ​block ID​. Both structures are essentially hashes, i.e.
unpredictable bytes. It should be noted that a pure PoS (without PoW) network would not be secure under such
rules, (typical attacks are described here: https://download.wpsoftware.net/bitcoin/old-pos.pdf), but our hybrid
model is safe.

c. ​Age of Coins: The age of coins has no impact on the probability of mining a PoS block. Restricting coins
eligibility to participate in staking has two direct impacts. While reducing the coins in circulation can increase
scarcity and possibly price, project’s that employ these requirements tend to be illiquid, which tends to increase
volatility, and makes them less attractive than a free-flowing market with price discovery and liquidity.
Additionally, this creates a more equitable environment for users; we consider egalitarianism a condition
precedent to acceptance and wide scale adoption, both on PoS mining and PoW mining through our
ASIC-resistant hash function, ProgPoWZ.

Cumulative chain weighing
The nature of PoW difficulty and PoS difficulty is completely different. PoW difficulty reflects the estimated

number of hashing operations needed to reach the target. PoS difficulty reflects the number of coins involved at a
particular moment in PoS-mining (“staking”). Each type of difficulty is controlled independently, and to ensure that the
network will choose a chain with greater efforts from both sides (PoS and PoW) we need to establish an algorithm which
evaluates summary efforts in a proper way.

The problem is that balance between PoW and PoS difficulty is constantly changing and primitive algorithms don’t
provide correct protection against manipulation.

The idea is to put into analysis only a work which is made on the distance of split and for evaluation of PoS work
to take the ratio of PoW difficulty and PoS difficulty at the split point between two competing chains. With this approach
adjusted cumulative difficulty exists only for a given sub-chain started from the point of the split. Let’s define the
adjustment coefficient at point of split as:K ′

 K ′ =
di

 pos

 di
 pow

where:

 ​— current PoW difficulty at the point of the split di
 pow

 — current PoS difficulty at the point of the splitdi
 pos

Then cumulative difficulty for given sub-chain S split from the main chain after block is:B′

D D D C
s = C s

pow + K ′ · C s
pos

where and D C s
pow = ∑

i
di

 pow D C s
pos = ∑

j
dj

 pos

 Illustration provided down below:

Figure 1

For the given example cumulative difficulties for both chains would be calculated as the following:

D 000 000 000 000 000 C A
pow = 1 + 1 + 1 + 1 = 4

D 00000 00000 00000 00000 00000 C A
pos = 1 + 1 + 1 + 1 = 4

D 000 400000 4000 00000) 000C A
adj = 4 + · K ′ = + 4 · (1000

100000 = 8

For chain “B” against “A” we are getting:

D 000 010 010 010 030 C B
pow = 1 + 1 + 1 + 1 = 4

D 00000 00 0 0 00120 C B
pos = 1 + 1 + 1 + 1 = 1

D 030 100120 4000 00120) 001C B
adj = 4 + · K ′ = + 1 · (1000

100000 = 5

now properly reflects PoS contribution and looks way greater than . Let’s try to see how muchDC A
adj DC B

adj

resources would be needed to commit double spend attack with formula. If we do analysis based on numbers from D C
s

the example above, then we can describe it with this equation:

 000 D D8 = C
P oS + 1

100 · C
P oW

With the graph presented above, you can see the red zone which represents an area of potential double spends and
the green area is safe. In this graph we assumed that amount of coins used in PoS mining in chain A was only 40% of
total coins in circulation, just to show that PoS “hash power” is a limited resource.

Figure 2

Figure 2 shows that if a potential attacker has nearly 100% of one of the types of resources (PoW or PoS) and a
minority of the other - then he can commit double spend attack by creating an alternative chain with superior . InD C

s
order to make the formula more resistant to the manipulation of difficulty through only one of the resources type(PoW or
PoS) to the detriment of the other, let’s introduce two balancing coefficients for the PoW and PoS and respectively,
which will take into account the ratio of cumulative difficulties on two alternative chains. In this case, the total
cumulative difficulty can only be calculated relative to another alternative chain, but cannot exist by itself.

Now, to see resulting curve which describe boundary of potential “double spend” attack, based on the same
numbers as in the example above, we can use both sides of the system of equations in the following inequality:

Figure 3

PoS power multiplication through PoW power problem
Let’s assume PoW miner has the majority of hashrate and can use his/her hashpower to let him/her multiply his

chances to find PoS block by not announcing all mined PoW blocks but announcing only those which let him/her win
PoS blocks. In this case having 100% hashrate (twice more than needed for performing double spend in pure PoW
system) let him do double spend by having only 25% of PoS power, with 200% needed only 12.5% of PoS power and so
on. Nevertheless, such manipulations do not create the possibility to go beyond the curve defined by the formula of
relative complexity:

Figure 4

In our opinion, this approach creates a stable equilibrium between PoW and PoS, ensuring decentralization and

high level of resistance to 51% attacks.

Aliases
Each Zano user can register with an alias, for example: @easytouse, a human-readable name associated with a

payment address and text comment, which is stored in the blockchain. This alias provides a short, easy-to-remember
name rather than a long and confusing string of random characters. Blockchain storage ensures that aliases are protected
from being altered or commandeered.

An alias registration is a special kind of transaction that includes a record of an alias assignment. The system core
validates the record and checks the availability of the name. Once validation is successful, the transaction reaches the
blockchain and a new record is created in the alias database.

Zano users can easily send transactions to an alias: their wallet automatically checks whether the name is registered
in the blockchain, and then obtains the associated public keys to which the transaction will be sent. In the event of a
missing alias, the wallet will generate an error report and no funds will be sent or lost.

Aliases can be used for more than just Zano transactions. Think of them as a decentralized address book with
universal IDs that can be used for various services based on the Zano platform.

To reduce possibility of phishing we set limitations on alias registrations. Users can use any combination of the
lower-case Latin letters a-z and the Arabic numerals 0-9. Additionally, there is a length minimum of 6 characters, and a
maximum length of 12.

Encrypted Attachments
Additional Data Fields
Zano allows for including arbitrary data in transactions; this data can be stored in the blockchain permanently or

removed after passing checkpoints, similar to the pruning mechanism that was first implemented in Boolberry. The
purpose of pruning was initially to manage blockchain bloat, but we have extended this to include arbitrary data that
similar to ring signatures, have a diminished relevance over time This gives developers the power to build a variety of
applications based on the Zano blockchain platform.

Figure 5

For this purpose, we implemented two types of transaction data fields:

• ​Transaction Extra: This field contains data that is included in the transaction prefix. The prefix is the first part
of any transaction; it stores essential information about the financial transaction. Data in the prefix is completely
hashed during the generation/validation of transaction signatures, which is why it cannot be later removed from
the blockchain.

• ​Transaction Attachments: This field contains additional data that does not need to be kept in the blockchain
permanently. A couple of examples are transactional data (including escrow proposals), comments on
transactions, or random data used by third-party services. Old transaction attachments are deleted (voluntarily
removed from the local hard drive) after every checkpoint has been passed, meaning the core will not check them
again. To protect data from being altered, we have put the transaction attachment hash into the transaction extra
field, so that the deleted data can always be verified, even after passing checkpoints.

Encryption
For many tasks, such as text comments in transactions, special fields in escrow proposals, etc., we need to encrypt

data included in transactions (attachments/extra). However, all keys should be retrievable, for both the sender and
recipient, in the event of hard drive failure or recovery of a wallet from a seed phrase (brain wallet). Essentially, they
should be able to be derived from the main wallet key and data in the blockchain.

Figure 6

In each transaction we already have a common secret element for both participants, known as a derivation. This is
part of an ephemeral key, which is produced using the Diffie-Hellman protocol for unlinkable payments [2][4]. All
transferred data is encrypted via a block cipher ChaCha using the key obtained from the derivation. (Figure 6)

The Challenge is that while the recipient can always calculate a derivation, given only an incoming transaction, the
sender cannot. Usually, the sender’s first step when preparing a transaction is to generate a random number (without
saving it) to produce the derivation. The next time the sender sees this transaction in the blockchain, he cannot
recalculate the same derivation without that randomly generated number.

To overcome this, we allow senders to store the derivation in the transaction and encrypt it using their own secret
key. As a result, both sender and recipient can reconstruct the derivation and decrypt their shared data from the
transaction, and no private information is ever published.

Multi-Sig
Multi-signature, or simply ​multisig​, is a commonly used term for special types of transactions in which money can

only be redeemed jointly by several recipients. ​M of N multisig means that a transaction (namely, the identifier of its
specific output) contains ​N keys, which belong to the multisig users, and at least ​M of these users (key owners) must
cooperate by providing their signatures in order for the cryptocurrency to be released.

Zanos multisig feature is extremely useful for user security. For example, this feature allows a user to hold their
coins in a 2-of-2 multisig, where both keys belong to this user, but are stored on different devices In this case, the user
obtains a two-factor authentication mechanism, which protects their wallet from a single key compromise.

Another popular feature of Zano is the escrow service, which will be described later in “Escrow” section.

Figure 7

Technically speaking, a multisig output differs only slightly from a standard output: it contains N keys (instead of
one key) and an M number. Developers’ work with multisig usually relates to 1) the consolidated creation of
transactions, or how to make the process of joint creation and signing more user friendly; and 2) the development of a
key and output indexing structure.

Indexing
In the interest of simplicity, we have introduced a new method of multi-signature output identification. Currently,

existing cryptocurrencies employ one of the two most commonly used identification methods:

● Identification by the transaction hash plus the order number of an output inside the transaction: Here we would
need to maintain a global index of all transactions. The downside to this approach is that if a transaction is
changed (new inputs or outputs are added), its hash also changes. Therefore, we cannot refer to an output (using
its identifier) until the transaction has been finalized, which disallows any subsequent changes.

● The global index of outputs method (CryptoNote, [2]): The amount of the output plus its order number among
other outputs with the same amount. This method optimizes the support of the ring signature feature, which
ensures the untraceability of payments. The challenge here is that we do not know the output order number until
the transaction reaches the blockchain (another transaction can be confirmed prior to it, thus altering the global
index of outputs).

Figure 8

To ensure the system supports the escrow service, (see next section) we must be able to make a reference to each
multisig output before its transaction is fused into the blockchain and even before its transaction is in its final form.
Specifically, we want to include a template for the future transaction B as an attachment to transaction A, so that the
embedded transaction B refers to transaction A ”from within”.

As a unique multi-sig output ​ID​ we use:

D H (txP ubKey||Out) I =

where:

• ​ID ​ is a multisig output identifier;

• ​H ​ is a cryptographic hash function;
• ​txPubKey​ is a one-time transaction public key (see section 1);
• ​Out​ is the output body;
• “||” is the concatenation operation

Due to the random nature of txPubKey and hash mapping properties, we get non-repeating identifiers for multisig
outputs (Figure 8). In order to prevent fraudulent operations, where attackers generate identical public keys and outputs
to create identical IDs, the program’s core tracks the uniqueness of each multisig ID.

Consolidated Transaction Terms
One of the most important conditions for enabling the escrow service on the platform is to provide the ability for

two or more users to jointly create a transaction. This way, payments are atomic (all or nothing) and each participant’s
funds are protected from theft, being frozen, or intentional money burn.

Figure 9 Creation of Consolidated Transaction

Figure 9 illustrates the basic principles in making a consolidated transaction. For example, Alice and Bob agree to
make a consolidated transaction, which sends money from each of them to a 2-of-2 multisig (meaning that only together,
can Alice and Bob release the funds).

a. Alice prepares the main multisig output, adds all relevant data (her inputs, outputs for balance of payments,
attachments, etc.) and signs the transaction. She also uses a special flag TX FLAG SIGNATURE MODE
SEPARATE, which will activate the core’s special advanced mode of transaction signature protocol verification.

b. At this point the transaction is incomplete: the total output sum is greater than the total input sum. Bob needs to
fund his portion of the transaction, so Alice sends a ”transaction template” (transaction information) to Bob as a
special attachment.

c. If Bob accepts this proposal (transaction template), then Bob funds his portion of the transaction and signs it.
Once the transaction template is fully funded, and signed, the transaction is considered valid and can be
broadcast to the network and subsequently included in the blockchain.

Security notes:

● To protect Alice’s attachment’s from being altered, the data hash is stored in the corresponding transaction input,
which is sealed by and with Alice’s signature.

● Until the transaction has been confirmed by the network, none of the participant’s funds are considered spent.
Once the transaction proposal is created, the funds used in this transaction are temporarily locked in the wallet,
this mitigates potential conflicts regarding other coins being spent from the same wallet. If the proposal
(transaction template) is rejected by the counterparty, or expires, the coins will be unlocked in the wallet from
which they were sent, without any further action.

● If Bob (or anyone else) were to attempt to interfere with or obstruct Alice (for example, locking Alice’s money
by publishing the transaction with incorrect data), they would need to make the transaction semantically correct,
which would require adding their own coins to the inputs. This requirement creates a disincentive that detours
malicious behavior.

Escrow
Escrow, like its name, is a mechanism that was designed to facilitate secure, anonymous, payments between

counter-parties. Traditionally, the term ”escrow” refers to an independent ”trusted” third party that is tasked with acting
as an intermediary to oversee and provide mutual assurances to each party that their agreement is executed in a manner
that is satisfactory to all parties. Their fiduciary duty includes carrying out the agreement as it was intended, but also
allows for modifications with mutual consent. Finally, the ”escrow” is responsible for disposition, transfer, or distribution
as a final step in the process.

Trust and reputation create value for participants, and justify fees commensurate with such escrows, along with
warranties, both expressed and implied. Certain aspects of an escrow are difficult to augment or mechanize. However, we
have developed a system that is intended to let participants chose, from a variety of variables, the structure that best suits
them and the nature of their respective transaction.

Zano provides the framework for a secure and private transaction without the need for a trusted third party. We
anticipate market participants are best suited to choose how the framework is applied to facilitate their objectives relative
to consummating a transaction. Our Escrow system, as proposed, will require participants to make additional deposits,
which they will forfeit if there is any attempt to act maliciously, or in a way that is contemptuous toward their
counterparty. In the absence of a rating or feedback system, similar to eBay or other escrow types, we must rely on
financial incentives to augment credibility and integrity in the absence of a trusted third party.

The main idea is as follows:

Figure 10. Creation of Consolidating-Transaction

a. Alice wants to buy an item from Bob for 100 ZANO.
b. Alice prepares an escrow transaction template that will transfer a total of 300 ZANO from both participants on a

2-of-2 multisig. The first key belongs to Alice and the second key to Bob.
c. Alice can include details, including delivery instructions, messages etc., all of which will be encrypted and only

retrievable by Bob. This data type was described above as transaction attachments and while the hash of the
attachment will be verifiable indefinitely on the blockchain, the actual attachment data will fall off after passing
checkpoints to manage blockchain bloat as this information at some point in the future loses its relevance. For
example, the shipping details including name, address etc. on a package you received a year ago is no longer
relevant.

d. Alice adds her inputs with 200 ZANO and sends the proposal transaction template (which is not yet semantically
correct) to Bob for his consideration.

e. Upon acceptance, Bob adds his input for 100 ZANO and broadcasts the transaction (which now becomes
semantically correct) to the network. At this point the funds involved in the transaction are locked.

f. Bob, pursuant to their agreement, sends the item(s) to Alice and waits for a response.
g. If Alice is satisfied with the order, both users sign a new transaction, which unlocks the money and sends 100

ZANO back to Alice and 200 ZANO to Bob.
h. Other scenarios may include: Alice sends the goods back to Bob, both get their money back, or Alice keeps

defective goods, asks for compensation and Alice and Bob share the money 50/50, and so on.
i. If anyone breaks the escrow (Bob does not send any goods or Alice receives the shipment, but refuses to sign the

money unlocking transaction), both will lose more than they would receive (Bob loses 100 ZANO or Alice pays
twice for the goods). Therefore, it is in everyone’s best interest to play fair.

Note:​ The size of locked deposits is determined by mutual agreement between the merchant and the customer.

Escrow Proposal
The main steps here are an escrow transaction. The buyer sends an incomplete ”transaction template” to the

merchant / counterparty (we refer to this as the ”proposal”). They cannot do so directly, since establishing direct
connections tends to be inconvenient and, more importantly, destroys anonymity. Additionally, these transactions cannot
be sent to the network using broadcast packets, as this would flood the network with excessive traffic. This is where
”transaction attachments” come in (see section “Encrypted Attachments”).

Figure 11

The buyer prepares a ”proposal” also referred to as a ”transaction template” (Figure 12), packs it, and stores it in
the attachment field of a special ”transport/carrier” transaction (the transferred amount of money in such a transaction can
be as low as the buyer wants, or even without any outputs). Additionally, the buyer encrypts the attachment using the
mechanism described in section “” in this paper, to preserve privacy. Once this is complete, the transaction enters the
blockchain and the merchant can then decrypt the attachment and proceed with the escrow transaction which remains in
the first transaction’s input.

IMPORTANT: Attachment data is not stored in the blockchain forever but is removed after passing each
checkpoint. The only ”excess data” is the 32-byte hash of the attachments. At the same time, the escrow attachments can
be arbitrarily large (the only limit is the systems current maximum transaction size) and can contain any necessary
information: order ID, delivery address, deposit sums, payment IDs, etc.

Figure 12

Escrow Response
The last steps are simple. Once the merchant receives the escrow template, they can decline it (no money will be

locked, no additional actions are needed) or accept it (by completing the escrow transaction and shipping the order to the
buyer). Prior to sending purchased goods to the buyer, the seller must prepare a ”release transaction template” which will
send 100 ZANO back to Alice and 200 ZANO to Bob, then encrypt it with Alice’s key and store it in the attachment field
of the escrow transaction (see figure 13).

The buyer receives the template of the second transaction and then gives their signature upon delivery of the goods
purchased from the merchant to release the money. Altogether, we employ a three-round protocol with no direct
connection between participants.

Figure 13

Difficulty Adjustment

Some miners were doing one of the typical "greedy mining" strategies - abruptly raised hashrate, keep mining until difficulty
get adjusted, and then dropped all hashrate, leaving a network stuck with one blocks/hour or even worse. For miners/pools this
strategy is profitable because it let them get "cheap" blocks(mined with low difficulty), but this is definitely a problem for
cryptocurrency - in such situation transactions confirmations takes hours, and other fair miners are quitting because mining on high
difficulty is getting unprofitable.

To analyze this type of attacks we reviewed Boolberry blocks history and picked up a representative period, where hashrate
was raised and dropped in this typical manner. Then, using difficulty associated with the blocks and their timestamps estimated
hashrate was derived. Here what I've got:

Figure 14

That was a first week of June 2014, and as it seen on marked areas - there was a hard time for the network, blocks were
coming once per hour or even worse.

Then, using this hashrate numbers, associated with time, became possible to calculate estimate blocks flow with timestamps
and difficulty values progression, and this simulation had been run for bunch different variations of adjustment functions.

At this graph showed original cryptonote adjustment function(the blue one), couple variations with “adjustment window”, and
currently preferred version(green one):

Figure 15

It calculated as combination of original adjustment functions for three different periods:

 (D720(historical_data) D240(historical_data) D40(historical_data))/2 D = + +

Where:

 ​D720​ - function which calculates difficulty based on last 720 blocks window with 60 / 60 cuts

 ​D240​ - function which calculates difficulty based on last 240 blocks window with 7 / 5 cuts

 ​D40​ - function which calculates difficulty based on last 240 blocks window with 6 / 2 cuts

This approach leads to prioritisation for a newest blocks influence to difficulty adjustment algorithm over older blocks. We do
this prioritization to achieve faster adaptation for a hashrate drops and spikes, but keep the older blocks in the range to get smooth
behavior and protection from timestamps manipulation. For PoS adjustment algo we going to use only ​D240 ​and​ D720.

Code Design
Zano’s methodologies are aimed at maximizing reliability, while maintaining a flexible and secure architecture.

● Component-based Modular Structure: There are three main software components: the daemon, miner, and the
wallet. The daemon connects to the network, validates and exchanges new blocks and transactions, and maintains
the local blockchain database. The daemon is the main component, sometimes referred to as the node. The miner
is a subprogram, that performs mining tasks and produces new blocks. The wallet stores users’ private keys and
provides an interface for creating transactions. The wallet connects to the daemon independently, which provides
the following advantages:

○ The daemon is the only component connected to the network, but it does not store private keys. This
means it is easier to ensure security since keys are separated from the network.

○ A single daemon can serve two or more wallets. This is particularly important for enterprise solutions,
such as web-wallets or payment processors that work with multiple keys at the same time.

○ Any modifications affecting the mining algorithm or user wallet features (GUI, keys encryptions) do not
affect the daemon’s operation.

● Forward and Backward Compatibility: When updating the software and enabling new features, it is of great
importance to maintain compatibility between old client software versions and new versions Usually when a
”new client” sends a modified (new) command or message to an ”old client,” the old client software does not
recognize it. Zano’s protocol allows older versions of client software to identify portions of data in the new
versions of messages that correspond to previous versions of messages (older protocol). Obviously, the client
software of older versions ignores the new data in new versions of messages, because it cannot handle such data.
Nevertheless, this feature helps to avoid the typical problems of evolving the protocol and adding new product
features.

● Asynchronous Core Architecture: Most Cryptonote projects use an interlocked multithreading model: each
incoming network or RPC call, is handled by the core, and passes through a mutex lock, which only allows one
thread to work with the core simultaneously. In the event of multiple requests from the network or RPC calls
(high transaction flow or high-load service requests) all requests will be handled consecutively, one-by-one,
which significantly limits network throughput. Our new core is a fully asynchronous architecture. This allow
multiple network / RPC requests to be handled in parallel. For example: Even if the atomic operation of ”adding
a block” to the core is processing, the core still can handle parallel RPC/network requests simultaneously, and
without limitations. This was accomplished by a deep refactoring and improvements to the multithreading model
of the core. Another strength of the new asynchronous core is that the transaction pool is no longer blocked
during the operation of adding a new block to the core. In classic CryptoNote implementation, transaction pool is
locked for the entire ”Add New Block” operation (which can take several seconds, in case of big blocks). During
times of high transaction flow, while the core is processing larger size blocks, validation of these blocks can
cause the transaction pool to be blocked for up to several seconds. During this seemingly short period,
connections from other nodes while relaying new transactions would be blocked, which can cause connection
time-outs, which are damaging to network connectivity, throughput, and impact network propagation. While in
this sub-optimal state, transfers can be rejected, and chain splits / orphan blocks become more likely. We were
faced with this exact situation while conducting stress tests and we able to solve this issue by making transaction
pool lock independently, and for a particularly fast, individual, operation, thereby eliminating the bottle neck
associated with the ”Add New Block” operation. To illustrate this how significant of an improvement this
represents, we will show screenshots from our diagnostics tool, which monitors connectivity of the network:
Colored dots are network nodes and lines between them represent connections. The color and width of the lines
reflect connection age:

– Newer connections are illustrated with a thin red line.

– Older connections are shown with thin blue line.

– Stable long-term connections are highlighted by bold blue lines.

Figure 14

● On the left side you can see the result of stress-testing one of our old test networks with, literally, hundreds of
thousands of transactions. Most connections are timing out and reconnecting, and the network is suffering from
these time outs and the bad relaying of transactions / blocks. On the right side is an example that illustrates a
network in perfect condition all connections are stable, ongoing transactions and blocks are being relayed
without any glitches or gaps.

● Note regarding Core tests: The risk of a ”bug” in the currency core has the potential to be devastating, and with
ongoing development, even the most cautious approach introduces the possibility of human error. With this fact
in mind, we expended an extraordinary amount of effort on rigorous ”core tests” –large set of project specific
unit-tests, which cover most of the currency core and wallet codebase. Almost every currency rule that is
validated by the core has a corresponding core test

References
[1] Satoshi Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” URL: https://bitcoinorg/bitcoinpdf
[2] Nicolas van Saberhagen, “CryptoNote v 20,” URL: https:// cryptonoteorg/whitepaperpdf, October 17, 2013
[3] Nicolas van Saberhagen, Johannes Meier, Antonio M Juarez, “CryptoNote Signatures,” URL: https://cryptonoteorg/cns/ cns001txt,

December 2011
[4] Nicolas van Saberhagen, Seigen, Johannes Meier, Richard Lem, “CryptoNote One-Time Keys,” URL: https://cryptonote

org/cns/cns006txt, November 2012
[5] Sunny King, Scott Nadal, “PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake,” URL: https://peercoinnet/assets/

paper/peercoin-paperpdf, August 19th, 2012
[6] URL: https://mintrpeercoinexplorernet/chart
[7] Whitfield Diffie and Martin E. Hellman, “New directions in cryptography,” URL: https://eestanfordedu/~hellman/publications/24pdf,

November 1976
[8] Daniel J Bernstein, “ChaCha, a variant of Salsa20,” URL: https://crypto/chacha/chacha-20080128pdf
[9] Andrew Poelstra, “Distributed Consensus from Proof of Stake is Impossible,” URL: https://downloadwpsoftwarenet/bitcoin/old-pospdf,

May 28, 2014
[10] https://boolberry.com/files/Boolberry_Solves_CryptoNote_Flaws.pdf
[11] https://boolberry.com/files/Block_Chain_Based_Proof_of_Work.pdf

https://boolberry.com/files/Boolberry_Solves_CryptoNote_Flaws.pdf
https://boolberry.com/files/Block_Chain_Based_Proof_of_Work.pdf

