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Abstract. Curve Finance invented the first stableswap-focused algo-
rithm. However, its algorithm involves (1) solving complex polynomials
and (2) requiring assets in the pool to have the same size of liquidity. This
paper introduces a new stableswap algorithm - Wombat, to address these
issues. Wombat uses a closed-form solution, so it is more gas efficient
and adds the concept of asset-liability management to enable single-side
liquidity provision, which increases capital efficiency. Furthermore, we
derive efficient algorithms from calculating withdrawal or deposit fees as
an arbitrage block. Wombat is named after the short-legged, muscular
quadrupedal marsupials native to Australia. As Wombats are adaptable
and habitat-tolerant animals, the invariant created is also adaptable and
tolerant to liquidity changes.
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1 Introduction

Automated Market Maker (AMM) is essential for Decentralized Finance (DeFi)
traders to swap tokens on-chain. As one of the essential foundations of DeFi,
AMM is integral to the success of any blockchain, whether it be the past, present,
or future. An efficient AMMwill have powerful effects on the ecosystem providing
decentralized apps with an efficient platform to build upon and thus, fueling
the next evolution of finance. Efforts from Uniswap, Curve, and Balancer have
contributed to developing a quick, efficient, and effective AMM design. Most of
the existing AMM designs use an invariant curve to create an efficient swap with
reasonable slippage directed at assets with a range of volatility characteristics.
Uniswap, one of the pioneers of AMM design, designed an AMM that focused on
more volatile assets such as ETH and BTC. The invariant curve was designed to
be more parabolic to ensure that price change follows demand shock [2]. Noting
the characteristics of pegged assets, Curve proposed an invariant curve that was
more linear in the interior part of the curve but more parabolic when x or y
tended to infinity [3]. Such a design allows a more efficient swap between pegged
assets such as stablecoins.
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As DeFi pushes toward higher efficiency, one of the main issues with the cur-
rent designs is their to scale while simultaneously remaining capital efficient.
These scaling issues are bounded by a protocol’s inherent designs and results
in complicated token-pair compositions. It must be noted that computational
inefficiencies affect the end-users in terms of fees forfeited as the cost is propor-
tional to complexity. On top of the cost, users are forced to deal with complex
user interfaces due to the inflexible algorithm, something that Wombat can both
simplify and make cost-effective. The development of Wombat aims at resolving
such deficiencies.

The invariant curve is a relationship between two or more token amounts. Math-
ematically speaking, it is a level set of a function that maps token amounts
to a real number [1]. To simplify the discussion, we focus on the two-token
case first. For example, consider x + y = k for some constant k. That means,
whenever a swap of ∆x to ∆y happens on this invariant curve, we know that
x0+∆x+y0+∆y = k, which implies ∆x = −∆y. On the xy-plane, the invariant
curve is a linear line. The invariant function x + y = k is called the Constant
Sum Market Maker (CSMM). Under CSMM, x could be swapped for the same
amount of y unless y runs out of liquidity. Another example of an invariant
curve would be xy = k for some constant k, also known as Constant Product
Market Maker (CPMM) used by Balancer and Uniswap [2]. The invariant curve
on xy-plane is more hyperbolic compared to CSMM.

One main problem of many existing AMMs is that they require injecting tokens
in pairs [5]. The ratio of these two tokens would, in turn, represent the price ratio,
and the functional behavior of the CPMM would control the price movement.
The screenshot below from Uniswap illustrates that a user needs to add ETH
and USDC to the pool simultaneously.
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Fig. 1: Uniswap Screenshot

In the case of Curve Finance, the equilibrium is achieved when the assets inside
the pool have the same liquidity amount. Otherwise, the invariant curve will
become more parabolic and inherently imply different trading prices for assets
within the pool. The screenshot below shows that USDT is trading at a discount
compared to USDC and DAI due to the pool imbalance.

Fig. 2: Curve Screenshot
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In the world of cryptocurrencies, there is a bias towards specific stablecoins.
At the time of writing, the market capitalization for USDT, USDC, and DAI
are 80B, 53B, and 6.6B, respectively. With Curve’s setup, the pool size will be
constrained by the asset with the lowest supply, i.e., DAI, since it is uneconomic
to deposit USDT and USDC further when the DAI supply is saturated. For this
reason, it will be beneficial to remove the liquidity constraint to increase the
system’s scalability. Following Wombat’s solution, we can have a more efficient
algorithm that is more capital and gas efficient while removing scalability issues.

Lastly, Curve’s stableswap algorithm is computationally inefficient when more
assets are in the pool. The required gas is summarized below in section 2.1.

2 Wombat’s Design

In light of the problems above, Wombat’s design aims to:

1. Make the algorithm more gas efficient;
2. Allow single-sided liquidity provision;
3. Get rid of the same-liquidity constraint for assets in the same pool.

2.1 Wombat’s Invariant Curve

Stableswap concerns the swap of pegged tokens and assets. Denote the set of
tokens with the same peg as

T := {token k : V (token k) = C},

where C is some fixed real number and V (·) is a value function that maps a
token to its value metric, usually in USD.

The main goal of a stableswap invariant is to create a function to mimic CSMM
when xk are close to each other. Revisit the Curve’s stableswap invariant:

Ann
∑
k∈T

xk +D = ADnn +
Dn+1

nn
∏

k∈T xk
,

where A > 0 denotes the amplification factor and D is the level preset by the
state of token pools, which is a constant with respect to swap.

Here, Wombat introduces a new algorithm that can achieve a similar result as
Curve’s stableswap invariant, yet much easier to solve:
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∑
k∈T

(
xk − A

xk

)
= D. (1)

The intuition is that when xk are close to each other, the reciprocal terms will be
minimized, making the function closely mimic the linear term, i.e., the CSMM.
However, if xk are apart from each other, the reciprocal terms will grow faster
and create a steeper slope for the curve.

For Curve Finance, solving the invariant constant D involves solving a high-
degree polynomial. As for Wombat, solving D is plain simple by calculating the
summation. For the case of a swap, Curve would involve solving a function with
product terms, while Wombat can be simply solved with a quadratic equation.

Fig. 3: CFMM Comparisons

20 40 60 80

50

100

150

200

250

x

y

CPMM (k = 2500)

CSMM (k = 100)

Curve (A = 1, D = 100)

Wombat (A = 300, D = 88)

Wombat’s simplicity enables it to be significantly more gas efficient since the
cost of smart contract development is based on the amount of calculations. As
shown in Table 1, the maximum gas usage by Curve is more than eight times
the maximum displayed by Wombat.
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Wombat Invariant Curve Curve Finance Invariant Curve

Minimum Gas: 140,000 Minimum Gas: 130,000
Maximum Gas: 180,000 Maximum Gas: 1,500,000

Table 1: Comparison of Algorithm Gas Costs

As illustrated in the comparison table of the algorithm gas costs, Wombat’s
invariant curve behaves very similarly to Curve, but the algorithm is improved.

2.2 Enhanced Wombat’s Invariant Curve

While equation (1) has presented a better alternative to Curve’s stableswap in-
variant, Wombat further adopts the asset-liability management concept proposed
by Platypus Finance [5] to get rid of liquidity constraints. The coverage ratio
is used as the input for the invariant curve, which allows single-sided liquidity
injection and arbitrary exchange across tokens within the preset pool.

To achieve so, we first forgo the ability to represent token price ratios since they
are exogenously set to be 1. The moving parameters of the CFMM need not
be the token’s liquidity in the pool; instead, we change them into the coverage
ratios r of the tokens, that is,

rk =
Ak

Lk
,

where rk is the coverage ratio of token k pool, Ak is the asset available for
withdrawal and swap in token k pool, and Lk is the liability in token k pool.
We can also understand the liability Lk as the amount of token k injected in the
pool as a deposit, and they are subject to withdrawal at any given time.

Now, we define our modified CFMM as follows: the invariant curve is given by

∑
k∈T

Lk

(
rk − A

rk

)
= D.

Since the equation is now revolving around coverage ratio of tokens instead of
liquidity, the system can get rid of liquidity constraint to enable features such
as single-sided deposit and heterogeneous liquidity for equilibrium.
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2.3 Swap Mechanism

For simplicity, we will focus on the two-token case, which is going to be the
primary action performed by the traders. However, it is also worth-mentioning
that our design allows a series of swaps simultaneously (i.e., from n tokens to m
tokens) as long as it fits the CFMM.

Consider two tokens, i and j. We look into the case when a trader swaps from
token i to token j. Let the initial coverage ratios of the two pools be ri,0 and
rj,0, respectively. With the swap, the coverage ratios of the two pools change
from (ri,0, rj,0) to (ri, rj), where

ri = ri,0 +
∆i

Li
and rj = rj,0 +

∆j

Lj
. (2)

Here, ∆i > 0 is specified by the trader, while an unknown ∆j is to be determined
by the CFMM. Since the level set specified by the CFMM remains unchanged
before and after the swap, we have∑
k∈T \{i,j}

Lk

(
rk − A

rk

)
+Li

(
ri,0 −

A

ri,0

)
+Lj

(
rj,0 −

A

rj,0

)
= D =

∑
k∈T

Lk

(
rk − A

rk

)
.

If we define the constant Di,j = Li

(
ri,0 − A

ri,0

)
+ Lj

(
rj,0 − A

rj,0

)
, then

Li

(
ri −

A

ri

)
+ Lj

(
rj −

A

rj

)
= Di,j (3)

After a series of algebraic operations, we obtain the function

rj =
−b+

√
b2 + 4A

2
,

where

b =
Li

Lj

(
ri −

A

ri

)
− Di,j

Lj
.

Note that we reject the solution that rj < 0. Knowing rj,0 and rj yields us
knowledge on ∆j .

Next, we focus on the properties of the invariant curves. Using implicit differen-
tiation on equation (3), we can obtain the derivative
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drj
dri

= −
Li

(
1 + A

r2i

)
Lj

(
1 + A

r2j

) < 0.

The negative derivative tells us that given the same invariant curve, any swap
action that increases ri would reduce rj . In other words, the more token i is
injected into the system, the more token j the trader receives. Without explic-
itly calculating the second-order derivative, we can study the behavior of the
first-order derivative by noticing that an increase in ri leads to a decrease in

Li

(
1 + A

r2i

)
, and a decrease in rj leads to an increase in Lj

(
1 + A

r2j

)
. Hence,

drj
dri

would become less negative when ri increases. This implies that
d2rj
dr2i

> 0.

A convex invariant curve indicates that continuous injection of token i would
yield the trader fewer and fewer token j in return per unit of token i injected.

2.4 Slippage Analysis

In the remainder of this section, we take a closer look at the slippage behavior
of the invariant curve. Recalling that ri and rj relate to ∆i and ∆j as described
in equation (2), we have

d∆j

d∆i
=

d∆j

drj
· drj
dri

· dri
d∆i

= Lj ·

−
Li

(
1 + A

r2i

)
Lj

(
1 + A

r2j

)
 · 1

Li
= −

1 + A
r2i

1 + A
r2j

. (4)

If ri = rj , then

d∆j

d∆i

∣∣∣∣
ri=rj

= −1,

which indicates that every token i injected would yield one token j at this partic-
ular state. If ri < rj , then the derivative in equation (4) is less than −1, so every
token i injected yields more than one token j. On the other hand, if ri > rj ,
then every token i injected yields less than one token j. Notice that swapping
token i to token j increases ri and lowers rj . Hence, when ri < rj , the arbitrage
opportunity encourages traders to swap token i to token j, thus reducing the
gap between the two coverage ratios. Conversely, if ri > rj , swapping token i to
token j widens the gap between the two coverage ratios and is discouraged with
a loss for the traders.
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Theorem 1. The equilibrium state of the AMM is that for all i, j ∈ T , ri = rj .

Proof. Assuming the contrary, there exist i, j ∈ T such that ri < rj . Then one
can find an arbitrage by swapping token i to token j until ri = rj .

3 Desirable Properties of AMMs

There are three desirable properties of AMMs, including path independence,
liquidity sensitivity, and no-arbitrage [4]. Wombat AMM is capable to achieve
path independence and is liquidity sensitive by design.

3.1 Path Independence

Path independence is crucial for AMMs because there should always exist a path
to return from any state to the equilibrium in the system. The importance lies in
the reality that if the system cannot regain equilibrium, then the system is out
of balance and there may be arbitrage opportunities that will negatively impact
the system’s stability. Path independence ensures that a trader cannot place
a series of trades and profits without assuming a potential risk. Furthermore,
it helps provide a minimum representation of the current state in which we are
only required to know the quantity vector. Finally, in a path independent system,
traders do not to need to discover a strategy on how they trade.

Any swap action is performed along the same invariant curve, and the liabilities
of all tokens remain unchanged throughout the process. Hence, after the coverage
ratios change from (ri,0, rj,0) to (ri, rj) as described in equation (2), the coverage
ratios can be returned to the status quo by swapping −∆j token j to token i.
Therefore, the Wombat AMM is path independent.

3.2 Liquidity Sensitivity

Liquidity sensitivity is imperative because it makes the protocol desirable in its
function, where a trade moves prices less in a liquid market than in an illiquid
one. This is important in any trading market, where small trades should not
drastically affect the market where sufficient liquidity is present. With this de-
sign, our AMM is able to mimic and emulate highly liquid traditional markets
where prices can be held stable and more resistant to small trades, enabling a
fairer and more transparent platform.

Recall that rj can be written explicitly as a function of ri, namely
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rj =
−b+

√
b2 + 4A

2
,

where

b =
Li

Lj

(
ri −

A

ri

)
− Di,j

Lj

and

Di,j = Liri + Ljrj −A

(
Li

ri
+

Lj

rj

)
= Liri,0 + Ljrj,0 −A

(
Li

ri,0
+

Lj

rj,0

)
.

Note that A, ri, ri,0, Li, and rj,0 are independent of Lj while rj and Di,j are
dependent of Lj . Also, recall from equation (2) that ∆j = (rj − rj,0)Lj < 0 in
the swap of token i to token j. Now we consider the partial derivative of ∆j with
respect to Lj .

∂∆j

∂Lj
=

∂rj
∂Lj

Lj + rj − rj,0

<
1

2

∂b

∂Lj

(
b√

b2 + 4A
− 1

)
Lj

=
1

2

(
− 1

L2
j

(
Li

(
ri −

A

ri

)
−Di,j

)
+

1

Lj

(
rj,0 −

A

rj,0

))(
b√

b2 + 4A
− 1

)
Lj

=
1

2

(
(rj,0 − rj)−A

(
1

rj,0
− 1

rj

))(
b√

b2 + 4A
− 1

)
< 0.

The last inequality holds since rj < rj,0 and
b√

b2 + 4A
< 1. Hence, if we keep

ri, ri,0, Li, and rj,0 unchanged, then ∆j becomes more negative when Lj grows,
meaning that the yield of token j increases.

4 Arbitrage Block

Wombat’s design suffers from arbitrage issues when a withdrawal or deposit is
made. The arbitrage issue is partly due to the asset-liability management design,
as there are opportunities for the coverage ratios to be manipulated by rogue
traders. A simple numerical example is illustrated below (assume A = 0.01).
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There are two tokens, X and Y, whose assets and liabilities start at 100. The
attacker first swaps 50 units of token X for 49.36 units of token Y, and the
coverage ratio of token Y drops from 1 to 0.51.

Asset Liability

Token X: 100 Token X: 100
Token Y: 100 Token Y: 100

Asset Liability

Token X: 150 Token X: 100
Token Y: 50.64 Token Y: 100

Table 2: Swap X for Y

The attacker is also a major liquidity provider for token Y. He withdraws 50
unit of token Y, and the coverage ratio of token Y drops from 0.51 to 0.013.

Asset Liability

Token X: 150 Token X: 100
Token Y: 50.64 Token Y: 100

Asset Liability

Token X: 150 Token X: 100
Token Y: 0.64 Token Y: 50

Table 3: Withdraw Y

Finally, the attacker swaps the 49.36 units of token Y he obtained from Step 1
back to token X. Note that the attacker gets a better exchange rate in Step 3
than Step 1 because the coverage ratio is being manipulated. The attacker earns
(49.36− 50)− (49.36− 86.91) = $36.91 from the whole operation.

Asset Liability

Token X: 150 Token X: 100
Token Y: 0.64 Token Y: 50

Asset Liability

Token X: 63.09 Token X: 100
Token Y: 50 Token Y: 50

Table 4: Swap Y for X

Therefore, the goal for this section is to provide an algorithm to block the arbi-
trage and solve it mathematically.

4.1 Changes in the Asset and Liability

Recall once again that our modified CFMM is
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∑
k∈T

Lk

(
rk − A

rk

)
= D.

If the system returns to the equilibrium state as described by Theorem 1, then
the global equilibrium coverage ratio r∗ satisfies

∑
k∈T

Lk

(
r∗ − A

r∗

)
= D (5)(∑

k∈T

Lk

)
(r∗)2 −Dr∗ −A

(∑
k∈T

Lk

)
= 0

(r∗)2 − D∑
k∈T Lk

r∗ −A = 0.

Solving the quadratic equation, we obtain r∗ =
−b+

√
b2 + 4A

2
, where b =

− D∑
k∈T Lk

.

In a withdrawal or deposit of token i, let δAi and δLi denote the change in the
asset and the change in the liability, respectively. Here, δLi ≥ −Li is specified by
the trader, where δLi < 0 denotes a withdrawal and δLi > 0 denotes a deposit.
The quantity δAi is to be solved as a function of δLi to block the arbitrage. The
new global equilibrium coverage ratio r∗′ after the withdrawal or deposit is given
by

r∗′ =
δLi +

(∑
k∈T Lk

)
r∗

δLi +
∑

k∈T Lk
. (6)

In this equation,
(∑

k∈T Lk

)
r∗ denotes the total asset if the system returns to

the equilibrium state. By adding δLi , the numerator expresses the total asset
after withdrawal or deposit if the system first returns to the equilibrium state,
while the denominator denotes that total liability after withdrawal or deposit.
From r∗′, we can solve for the new constant D′ such that

(
δLi +

∑
k∈T

Lk

)(
r∗′ − A

r∗′

)
= D′. (7)

With the new constant D′, we can backward deduce the coverage ratio r′i needed
to maintain the equilibrium of the system:
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(Li + δLi )

(
r′i −

A

r′i

)
+

∑
k∈T \{i}

Lk

(
rk − A

rk

)
= D′ (8)

(Li + δLi )(r
′
i)

2 +

 ∑
k∈T \{i}

Lk

(
rk − A

rk

)
−D′

 r′i −A(Li + δLi ) = 0

(r′i)
2 +

1

Li + δLi

 ∑
k∈T \{i}

Lk

(
rk − A

rk

)
−D′

 r′i −A = 0,

so

r′i =
−b′ +

√
(b′)2 + 4A

2
,

where

b′ =
1

Li + δLi

 ∑
k∈T \{i}

Lk

(
rk − A

rk

)
−D′


=

1

Li + δLi

(∑
k∈T

Lk

(
rk − A

rk

)
− Li

(
ri −

A

ri

)
−D′

)

=
1

Li + δLi

(
D − Li

(
ri −

A

ri

)
−D′

)
. (9)

Finally, the corresponding change δAi in the asset of token i is given by

δAi = (Li + δLi )r
′
i − Liri (10)

=
D′ + Li

(
ri − A

ri

)
−D +

√(
D′ + Li

(
ri − A

ri

)
−D

)2
+ 4A(Li +∆i)2

2
− Liri.

4.2 Maintain Global Equilibrium with r∗ = 1

The essence of our modified CFMM is that the system is the most stable when all
coverage ratios are 1. Swap, withdrawal, and deposit will change the coverage
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ratios of each individual pool, but our design guarantees that we can always
maintain the global equilibrium coverage ratio as r∗ = 1, which is explained as
follows.

As seen in Section 2.3, the liabilities Lk and the constant D stay unchanged in
our swap mechanism, so the global equilibrium coverage ratio r∗ in

(∑
k∈T

Lk

)(
r∗ − A

r∗

)
= D

is always preserved. As for withdrawal or deposits, if the initial global equilibrium
coverage ratio is r∗ = 1, then the new global equilibrium coverage ratio r∗′,
defined in equation (6), is also 1.

Maintaining the global equilibrium coverage ratio to be 1 has another significant
implication, given by the following theorem.

Theorem 2. Assume that r∗ = 1. If δLi < 0, then δLi ≤ δAi < 0; if δLi > 0, then
0 < δAi ≤ δLi . Furthermore, in both cases, δLi = δAi if and only if ri = 1.

Proof. If r∗ = 1, then D =
(∑

k∈T Lk

)
(1−A) by equation (5), r∗′ = 1 by equa-

tion (6), and D′ =
(
δLi +

∑
k∈T Lk

)
(1−A) by equation (7). Hence, equation (8)

becomes

(Li + δLi )

(
Ai + δAi
Li + δLi

− A(Li + δLi )

Ai + δAi

)
+

∑
k∈T \{i}

Lk

(
rk − A

rk

)
=

(
δLi +

∑
k∈T

Lk

)
(1−A)

Ai + δAi − A(Li + δLi )
2

Ai + δAi
+D − Li

(
ri −

A

ri

)
= δLi (1−A) +D

δAi − A(Li + δLi )
2

Ai + δAi
+

AL2
i

Ai
= δLi (1−A). (11)

If δLi < 0 and δAi ≥ 0, then the left hand side (LHS) of equation (11) is positive
while the right hand side (RHS) is negative, a contradiction. Similarly, if δLi > 0
and δAi ≤ 0, then the LHS is negative while the RHS is positive, a contradiction
again. Hence, δLi and δAi always share the same sign.

To compare δLi and δAi , we first rewrite equation (9) as
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b′ =
1

Li + δLi

((∑
k∈T

Lk

)
(1−A)− Li

(
ri −

A

ri

)
−

(
δLi +

∑
k∈T

Lk

)
(1−A)

)

= − 1

Li + δLi

(
Li

(
ri −

A

ri

)
+ δLi (1−A)

)
.

Therefore, equation (10) yields

δAi − δLi

=
−(Li + δLi )b

′ +
√

((Li + δLi )b
′)

2
+ 4A(Li + δLi )

2

2
− Liri − δLi

=
−Li

(
ri +

A
ri

)
− δLi (1 +A) +

√(
Li

(
ri − A

ri

)
+ δLi (1−A)

)2
+ 4A(Li + δLi )

2

2
.

Note that

(
ri −

A

ri

)2

+ 4A = r2i − 2A+
A2

r2i
+ 4A =

(
ri +

A

ri

)2

and

(1−A)2 + 4A = 1− 2A+A2 + 4A = (1 +A)2.

Furthermore, by the AM-GM inequality, we have ri +
1

ri
≥ 2, so

(
ri −

A

ri

)
(1−A) + 4A = ri +

A2

ri
−A

(
ri +

1

ri

)
+ 4A

≤ ri +
A2

ri
−A

(
ri +

1

ri

)
+ 2A

(
ri +

1

ri

)
=

(
ri +

A

ri

)
(1 +A),

where the equality holds if and only if ri = 1. As a result,
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(
Li

(
ri −

A

ri

)
+ δLi (1−A)

)2

+ 4A(Li + δLi )
2

= L2
i

(
ri −

A

ri

)2

+ 4AL2
i + 2Li

(
ri −

A

ri

)
δLi (1−A) + 8ALiδ

L
i

+ (δLi )
2(1−A)2 + 4A(δLi )

2

= L2
i

(
ri +

A

ri

)2

+ 2Liδ
L
i

((
ri −

A

ri

)
(1−A) + 4A

)
+ (δLi )

2(1 +A)2.

If δLi < 0, then

√(
Li

(
ri −

A

ri

)
+ δLi (1−A)

)2

+ 4A(Li + δLi )
2

≥

√
L2
i

(
ri +

A

ri

)2

+ 2LiδLi

(
ri +

A

ri

)
(1 +A) + (δLi )

2(1 +A)2

=

∣∣∣∣Li

(
ri +

A

ri

)
+ δLi (1 +A)

∣∣∣∣ ,
so δAi − δLi ≥ 0, with the equality holds if and only if ri = 1; if δLi > 0, then

√(
Li

(
ri −

A

ri

)
+ δLi (1−A)

)2

+ 4A(Li + δLi )
2

≤

√
L2
i

(
ri +

A

ri

)2

+ 2LiδLi

(
ri +

A

ri

)
(1 +A) + (δLi )

2(1 +A)2

=

∣∣∣∣Li

(
ri +

A

ri

)
+ δLi (1 +A)

∣∣∣∣ ,
so δAi − δLi ≤ 0, again with the equality holds if and only if ri = 1.

4.3 Withdrawal Fees and Deposit Gains

Now, we are ready to describe our algorithm to block the arbitrage. When a
withdrawal is made, ∆i < 0 is specified by the trader. We define δLi = ∆i as the
change in the liability of token i, and δAi is given by
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δAi =
Li

(
ri − A

ri

)
+ δLi (1−A) +

√(
Li

(
ri − A

ri

)
+ δLi (1−A)

)2
+ 4A(Li + δLi )

2

2
−Liri.

(12)

As proved in Theorem 2, |δAi | ≤ |δLi | = |∆i|, so from the trader’s perspective,
there is always a withdrawal fee unless ri = 1. Furthermore, it is apparent from
equation (2) that δAi ≥ −Liri = −Ai, so the final amount of token i that the
trader receives is bounded above by the amount of token i available in the system.

On the other hand, when a deposit is made, ∆i > 0 is specified by the trader.
We define δAi = ∆i as the change in the asset of token i, and we solve for δLi in
equation (12). Rearranging the terms and letting A′

i = δAi +Liri be the asset of
token i after the deposit, we have

2A′
i −
(
Li

(
ri −

A

ri

)
+ δLi (1−A)

)

=

√(
Li

(
ri −

A

ri

)
+ δLi (1−A)

)2

+ 4A(Li + δLi )
2.

If we square the equation, cancel the identical terms on both sides, and divide
the equation by 4, we get

(A′
i)

2 −A′
i

(
Li

(
ri −

A

ri

)
+ δLi (1−A)

)
= A(Li + δLi )

2.

This is a quadratic equation in δLi , namely

A(δLi )
2 + bδLi + c = 0,

where b = A′
i(1 − A) + 2ALi and c = A′

iLi

(
ri −

A

ri

)
− (A′

i)
2 + AL2

i . The

discriminant of the quadratic equation is given by

b2 − 4Ac = (A′
i)

2(1−A)2 + 4A′
i(1−A)ALi + 4A2L2

i

− 4AA′
iLi

(
ri −

A

ri

)
+ 4A(A′

i)
2 − 4A2L2

i

= (A′
i)

2(1 +A)2 + 4AA′
iLi

(
1−A− ri +

A

ri

)
,

thus the change in the liability δLi is
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δLi =

−(A′
i(1−A) + 2ALi) +

√
(A′

i)
2(1 +A)2 + 4AA′

iLi

(
1−A− ri +

A
ri

)
2A

. (13)

The negative branch is rejected since it is less than −Liri. As proved in Theo-
rem 2, ∆i = δAi ≤ δLi , so from the trader’s perspective, there is always a deposit
gain unless ri = 1.

5 Swap with Haircut Fees

As a profit for the protocol, we charge a certain percentage for each swap as a
haircut fee, denoted as h. Part of this fee will be shared with the liquidity provider
and will enter the token pool as a deposit; the rest is going to be retained by
Wombat. Let ρ denote the LP dividend ratio, which is the ratio of the haircut fee
that is shared with the liquidity provider. The portion retained by Wombat will
not be included as part of the token assets for accounting purpose to maintain
r∗ = 1. In the following, we will describe how swap is performed with haircut
fees.

During the first stage, token i is swapped to token j as described in Section 2.3.
Here, we provide an explicit expression for ∆j .

∆j = Ljrj − Ljrj,0

=
Di,j − Li

(
ri − A

ri

)
+

√(
Di,j − Li

(
ri − A

ri

))2
+ 4AL2

j

2
− Ljrj,0,

where ri and Di,j are given by equations (2) and (3), respectively. After the
swap, the trader receives (1−h)|∆j | token j, with h|∆j | token j deducted as the
haircut fee. Before the haircut fee is redeposited into the system, the amount of
assets in token i and token j are respectively

Liri,0 +∆i and Ljrj,0 +∆j ,

while the liabilities of token i and token j maintain at Li and Lj , respectively.

Next, ∆′
j = hρ|∆j | token j is deposited into the system since it is shared with

the liquidity provider. Using the token j version of equation (13) and setting
δAj = ∆′

j , we can compute the corresponding δLj . Therefore, the summary of the
final amounts is given by the following table.
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Final asset of token i Liri,0 +∆i

Final asset of token j Ljrj,0 + (1− hρ)∆j

Final liability of token i Li

Final liability of token j Lj + δLj

Table 5: Final asset and liability of tokens i and j after a swap with haircut fees

6 Exact Swap, Withdraw, and Deposit when r∗ = 1

The previous sections show that swap, withdraw, and deposit almost always
come with fees or gains. Sometimes, it is desirable to deduce the appropriate
amount a trader needs to initially swap, withdraw, or deposit to attain the
exact target amount.

In a swap, if the trader specifies the exact amount |dj | of token j that they would

like to receive with dj < 0, then ∆j =
dj

1− h
, and rj is defined as in equation (2).

After solving for ri in equation (3), we can deduce that

∆i = Liri − Liri,0

=
Di,j − Lj

(
rj − A

rj

)
+

√(
Di,j − Lj

(
rj − A

rj

))2
+ 4AL2

i

2
− Liri,0,

which is the amount of token i that the trader should swap.

In withdrawal or deposits, as shown in equations (12) and (13), δAi and δLi can
be expressed as a function of each other. Hence, if the trader wants to receive
exactly |di| token i in a withdrawal with di < 0, then letting δAi = di and solving
for δLi using equation (13), we obtain ∆i = δLi as the initial parameter for the
withdrawal. Similarly, if the trader wants to have exactly di token i stored in the
system with di > 0, then letting δLi = di and solving for δAi using equation (12),
we obtain ∆i = δAi as the initial parameter for the deposit.

7 Conclusions

We have introduced an innovative algorithm that resolves many issues of the
current AMM environment. The existing solutions in the market are computa-
tionally inefficient, and these protocols lack the ability to scale while keeping an
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intuitive design both technically and visually. Additional protocols have been
built on these platforms to address some of these problems, but they inevitably
add an extra layer of complexity for end-users. In the world of blockchain smart-
contract development, unnecessary complexity is a burden to the end-users due
to high gas fees and disincentivizes users from interacting with the protocol.

The design of the Wombat algorithm allows for maximum capital efficiency and
scalability, which helps promote the growth of decentralized finance. Our work
is centered on a CSMM that shows positive homogeneity since the response
of relative price is identical at various levels of liquidity. Wombat’s algorithm
provides a solution to the status quo, which results in a price-sensitive and
path-independent solution while being computationally efficient. We have proved
that our arbitrage block can withstand manipulation of the coverage ratio. The
arbitrage block can protect the system from malicious attacks, shielding Wombat
from attack vectors that would hurt the system.
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