

https://scpri.me
Kenneth S Bell – kennethsbell@gmail.com
Boris Nagaev - bnagaev@gmail.com
Pavel Dolgov – pdolgov99@gmail.com

ScPrime Distributed Cloud Storage

mailto:kennethsbell@gmail.com
mailto:bnagaev@gmail.com
mailto:pdolgov99@gmail.com

1 | P a g e

Contents
Abstract ... 0

1 Project Information ... 1

1.1 Introduction ... 1

1.2 Baseline Features ... 2

1.2.1 Consensus .. 2

1.2.2 Payment Channel/ Smart Contracts .. 2

1.2.3 Erasure Codes .. 2

1.2.4 Encryption .. 2

1.2.5 Licensing/Compensation ... 2

1.3 Business Model .. 4

1.3.1 Competition ... 4

1.3.2 Market Opportunity ... 5

1.3.3 Compliance .. 5

1.3.4 Service Level Agreements .. 5

1.3.5 Economics .. 5

1.3.6 Airdrop ... 6

1.3.7 ScPrimefunds ... 6

1.3.8 Supply and Coin Velocity ... 6

1.3.9 Community Edition/ 3rd Parties ... 7

1.3.10 Offensive/Illegal Material – Terms of Service ... 7

2 Implementation .. 8

2.1 Blockchain / Payment Channel .. 8

2.1.1 Proof of Work .. 8

2.1.2 Transactions ... 8

2.1.3 Contracts .. 9

2.1.4 Storage Proofs ... 9

2.2 Relayer ... 10

2.2.1 Distributed Renter ... 10

2.2.2 Wallet/Exchange .. 10

2.2.3 Erasure Codes .. 10

2.2.4 Durability Factors ... 11

2.2.5 Custom Contract Sets .. 12

2.2.6 AWS S3 compatibility ... 12

2.3 Technical Proposals .. 13

2 | P a g e

2.3.1 Prepaid downloads .. 13

2.3.2 Deferred Contract Updates.. 14

2.3.3 Metadata Database ... 15

2.3.4 New RPCs ... 17

2.4 Network Development ... 18

2.4.1 Incentives ... 18

2.4.2 Churn/Object Repair .. 18

2.4.3 Block and Network Metrics.. 19

2.4.4 Provider and Network Development ... 19

2.4.5 Latency / Bandwidth Constraints ... 20

2.5 Appendix A Functional Requirements .. 21

2.5.1 Relayer ... 21

2.5.2 Client .. 21

2.5.3 Network ... 22

References ... 0

Abstract
Twenty-five years after the first public Internet trials, the long promise of distributed global networking has taken
an unexpected turn with a small group of Silicon Valley hegemons in control of our connected world. Instead of
open access in a competitive environment, the future of exponentially growing shared data creation, storage and
distribution has been captured. Large-scale data breaches, network outages and government intrusion lead
headlines while managers have little choice but to migrate critical business data to the cloud as benefits far
outweigh even the most severe risk.

But it doesn't have to be this way. We can reclaim the promise of distributed tech and return control back to the
creators. ScPrime (pronounced ess-cee-prime and short-handed as SCP) is building a decentralized cloud storage
product on a fully distributed network. This paper describes our core technical innovation, network development
and the business model we'll use to recapture the promise of globally interconnected computing.

1 | P a g e

1 Project Information

1.1 Introduction

The Problem
Privacy, Security, Price
A handful of public cloud storage companies hold a
decisive share of enterprise data, with Amazon's
AWS IaaS product controlling over 49% of the
market 1. Aggregating data in huge, purpose-built
facilities is reversion to the client-server model on a
global scale with increased risk of damaging data
breach, monopolistic pricing and questions of data
ownership. Business managers need alternatives
that return control to the customer.

1 Nag, Syd. (2019) Market Share Analysis: IaaS and
IUS, Worldwide, 2018.
https://www.gartner.com/document/3947169?ref=s
olrAll&refval=225669178&qid=ee7cc875a489136e93
c3a8

The Solution
 a Secure Cloud Provider
SCP is a decentralized mesh network of independent
storage providers compensated for dedicating trivial
amounts of disk space to create a globally connected
"datacenter". Market-based incentives tied to
distributed client access remove centralized control.
The product weaves together strong encryption,
data sharding, cryptographic signatures and a
publicly auditable blockchain to ensure the highest
security and durability of customer data in a self-
organizing and highly cost-competitive environment.

2 | P a g e

1.2 Baseline Features
The foundation of SCP is an open source protocol
with early feature abstraction. Leveraging open
source development is cost effective in allowing the
project to quickly move to proprietary innovation
and tangible product deliverables. The following
features form the basis we build on:

1.2.1 Consensus
A distributed ledger of financial transactions
between mostly anonymous participants is publicly
validated by specialized computers (Proof-of-work)
competing to bundle "blocks" of transactions,
colloquially referred to as mining2. SCP began when
the open source project centralized this validation by
forcing participants to purchase equipment solely
from a company owned by the development team,
thus orphaning a large inventory of equipment
capable of providing decentralized blockchain
verification from anyone and anywhere in the world.
The result of a publicly verified transaction
consensus is known as a blockchain.

1.2.2 Payment Channel/
Smart Contracts

The project uses a state channel architecture and
P2P networking for anonymous contract formation
between storage clients and storage providers.
Contracts stage data uploads via agreement on
price, length of time and other criteria. Following a
successful negotiation and data upload, providers
submit regular proof that data is held as contracted.
Publicly auditable transactions ensure valid proof
results from ongoing contract payments while the
inability to furnish proof results initially in non-
payment and ultimately contract invalidation.

Contracts include a root cryptographic hash
composed of individual segments that are hashed
into a Merkle tree. The root hash along with the data
object size is used to verify storage proofs. Contracts
specify duration, challenge frequency and payouts.
Each client creates contracts with many providers
based on desired price and performance
characteristics. Finally, contracts include a fee

2 Nakamoto, Satoshi. (2008) Bitcoin: A Peer-to-Peer
Electronic Cash System
https://bitcoin.org/bitcoin.pdf

deduction with the proceeds accruing to a secondary
crypto token3

1.2.3 Erasure Codes
Reed-Solomon erasure codes distribute data
mathematically across a set of sectors, drives, nodes
or computers for higher durability and efficiency
over simple replication. Data is fragmented,
expanded and encoded with redundant parity
pieces, which are stored across a set of locations
where statistically significant numbers may failover
before original data is unrecoverable.

1.2.4 Encryption
The greatest challenge for cloud storage providers is
privacy and security of client data. The average cost
of an enterprise data breach is just under $1.5m in
an environment companies have complete control
over4. Moving to the cloud involves relinquishing
control and trusting another firm. The issue is
compounded in populating data on platforms hosted
by mostly anonymous and self-interested actors.

The solution is an enforced end-to-end encryption
before allowing data onto the network. Client-side
encryption creates unique engineering challenges
but is the basis for truly secure and private data that
is protected from unauthorized access. As of this
writing, most traditional cloud storage companies do
not enforce end-to-end encryption.

1.2.5 Licensing/Compensation
The base code is freely and publicly usable on a non-
restrictive MIT open source license. SCP intends
significant modification to the codebase for our final
software stack. While there is no specified
compensatory requirement or agreement, SCP
supports ongoing development of the base software
through two cryptocurrency grants. The SCP product
will be a mix of open source and proprietary code for

3 Champine, Luke. & Vorick, David. (2014) Sia: Simple
Decentralized Storage
https://sia.tech/sia.pdf
4 Mendoza, N.F. (2019) Data breaches now cost
companies an average of $1.41 million.
https://www.techrepublic.com/article/data-
breaches-now-cost-companies-an-average-of-1-41-
million/

3 | P a g e

our own core development. The entire license
follows5.

The MIT License (MIT)

Copyright (c) 2016 Nebulous Inc.

Permission is hereby granted, free
of charge, to any person obtaining
a copy of this software and
associated documentation files (the
"Software"), to deal in the
Software without restriction,
including without limitation the
rights to use, copy, modify, merge,
publish, distribute, sublicense,
and/or sell copies of the Software,
and to permit persons to whom the
Software is furnished to do so,
subject to the following
conditions:

The above copyright notice and this
permission notice shall be included
in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

5 Champine, Luke. (2016) MIT License
https://gitlab.com/NebulousLabs/Sia/blob/master/LI
CENSE

4 | P a g e

1.3 Business Model
Public cloud services and infrastructure are growing
exponentially with compound annual growth rates
(CAGR) of 20% forecast through 2022 and increasing
beyond6. Even with potential risk, enterprise is
transitioning from onsite capital expense outlays and
personnel to predictable operational expenses in the
cloud. Competition is expected from incumbent
providers and new technology, yet the opportunity is
so large there will likely be many winners. The
successful competitors will start by meeting basic
requirements.

• Compliance regimes for data access,
retention and removal

• Service level agreements (SLAs) to
guarantee performance

• Compatibility with de facto standards.

 Figure 1- Statista Digital Market Outlook

6 Smith, Eileen. (2019) Worldwide Public Cloud
Services Spending Will More Than Double by 2023.
Retrieved from
https://www.idc.com/getdoc.jsp?containerId=prUS4
5340719

1.3.1 Competition
Amazon, Microsoft and Google account for an
overwhelming percentage of the Enterprise cloud
storage market with breathtaking scale across the
planet. Individual AWS datacenters house millions of
servers running custom networking software and
routing equipment in the single most profitable
Amazon business segment and cost the company
$500-600m to build. Though thousands of cloud
storage brands exist, the majority simply rebrand
and resell AWS capacity under a white label
licensing.

Competing with an entrenched, dominant
incumbent requires superior privacy, security and
performance delivered at a significantly lower price.

5 | P a g e

1.3.2 Market Opportunity
Predicted exponential growth begins with
approximately 40 zettabytes (1 zettabyte equals a
billion terabytes) of globally created data in 2018
leading to a fifteen-fold increase by 20307. Falling
costs and better security enable storage of data
previously discarded or kept on less reliable and
inexpensive media. One example are daily backup
activities previously reserved for onsite tape
mechanisms with media transported to secure
offsite locations for preservation. While the current
providers will spend on new installations, storage
capacity must also come from new and novel
directions if the need is to be met.

Companies expect a simple product with an easy
transition from internal storage configurations or
competing cloud services. The SCP product provides
complete (S3) compatibility, taking advantage of a
well-developed ecosystem of 3rd party tools.
Customers are never exposed to underlying crypto-
currency acquisition or custody, removing a major
hurdle to adoption for projects unable to provide
mainstream strategies.

Beyond simple storage lies even larger markets for
platform, infrastructure and software as-a-service
(IaaS, PaaS, SaaS). If basic object storage is the price
of admission, the applications that run on top
represent profitable avenues far beyond the initial
goals of SCP.

1.3.3 Compliance
Data creators are increasingly required to adhere to
a panoply of compliance regimes based on data
protection, retention policies, privacy requirements,
geographic region and more. A recent high-profile
example is the European General Data Protection
Regulation (GDPR) which gives a strict set of
guidelines for enterprise use of personal data. The
network must provide a transparent mechanism
with auditability to meet compliance requirements.

7 Buss, Sebastian & Becker, Dennis & multiple others
(2019) Digital Economy Compass
Retrieved from
https://www.statista.com/study/52194/digital-
economy-compass/

Independent storage providers on the network who
are willing to meet certain standards will enjoy
potentially higher earnings by forgoing anonymity
and/or allowing inventory and performance
monitoring tools. The Relayer will include the ability
to identify and list storage provider profiles for audit.

1.3.4 Service Level Agreements
Most decentralized projects/products seek to
provide anonymous capability while bypassing
traditional responsibilities. The customer must
accept given levels of performance and availability
without recourse. SCP, as the operator of a
decentralized network can create Service Level
Agreements and compensate on performance not
meeting a set standard. This is achieved with a
thorough inventory of the provider network, using
incentives to gain specific performance and a clear
presentation of expectation when choosing a group
of providers for any given contract-set.

1.3.5 Economics
At project startup, a new blockchain instantiated
from a “genesis” block emitted 300,000 SCP coins to
miners solving the cryptographic riddle. The coin
emission schedule decays by a single coin per block
until reaching 10,000 SCP (approximately 5.5 years
from genesis) where it is expected to remain in
perpetuity, creating a nonlinear inflation schedule. A
project development fee starting at 20% of the block
reward and declining over a two-year period was set
aside for developer cost. Based on general market
conditions, this fund cannot suffice, and private
investment is required to complete the product.

A “pre-mine” of coins created in the genesis block is
meant to reward and incentivize potential
supporters. A breakdown follows:

• 300,000,000 to Nebulous, Inc for the
original development of Sia.

• 51,000,000 to mining pool operators to
assist with maturity payout

• 200,000,000 for initial project expenses
• 1,750,000,000 for the storage provider

incentive program

6 | P a g e

• 628,000,000 for exchange listing fees
• 7,622,000,000 earmarked for an “airdrop”

to Sia coin holders

1.3.6 Airdrop
Providing free coins to progenitor addresses has
precedent in crypto projects, with "airdrops"
encouraging support or a lack of hostility from
parent project supporters. There is little evidence
these actually accomplish the goal, but SCP decided
on a 1:5 ratio airdrop. For every 5 SC coins, 1 SCP
coin was created in the Genesis block and awarded
in a scripted transaction send based on a snapshot of
addresses taken at block height 179,000 of the
original project. Slightly more than three billion coins
were sent to more than 650,000 individual addresses
without precondition.

Careful study revealed an inordinate amount of the
original project's coin supply (60%) is held in less
than 35 addresses from the snapshot richlist. A
determination was made these are centralized
exchange addresses and a conclusion reached that
coins sent to these addresses would likely never
reach actual owners and thus were moved into a
cold wallet containing 4,525,377,327 SCP. As of this
writing, the coins represent less than 18% of the
outstanding supply. When the supply reaches a
nominal “ceiling” of 55B SCP sometime in 2023, the
wallet will represent approximately 8% of the total
supply. The coins are earmarked toward ensuring
the success of the product, potentially through
distribution to investors, network incentives to
storage providers or sending them to an
unspendable address (known as coin burn). The
community will be included in the decision as it is
made.

The address of the cold wallet for
inspection/monitoring is
f21eacb5c9d64902d2546efa2de9e8d379488895b92
44fcc4ec8bd0817e0af8bdbe07f724463.

1.3.7 ScPrimefunds
There are two cryptoassets; SCP utility coins used in
contracting between client software and the
distributed provider network, and an equity token
not publicly available. 10,000 ScPrimefunds (SPF)
were airdropped on a 1:1 basis to original project
holders. They are predominantly held by the
development company, Nebulous Inc. An additional
20,000 SPF were minted for the ScPrime project.

These tokens exist as equity in the network and earn
a percentage of every transaction between clients
and providers. The purpose is to provide a long-term
revenue stream for development and possibly as
another pool for incentives.

Each SPF earns 0.000005 from contract transactions
and the fees are automatically pulled from contracts
and sent to the SPF addresses. 2500 SPF are set
aside as part of a private equity raise, with another
2500 set aside for team distribution and an option
pool for new employees.

1.3.8 Supply and Coin Velocity
When thinking about whether a protocol’s token can
capture and sustain economic rent, what is relevant
is whether the mining industry maintaining the
protocol’s blockchain is competitive, not the
stickiness of users. The mining industry supporting
any decentralized protocol must be a competitive
market; otherwise the protocol isn’t decentralized8.

Products based on crypto-assets may suffer from a
velocity problem limiting coin value and possibly
leading to a lack of miners willing to spend electricity
unprofitably. In the case of SCP decentralized cloud
storage, coins purchase storage space over specified
time periods in a contract process underneath the
client software. There is no reason or ability for our
storage customers to buy and store more coins than
needed for storage use. Coins are purchased on the
open market and provisioned automatically. While

8 Pfeffer, John. (2017) An (Institutional) Investor’s
Take on Cryptoassets
https://s3.eu-west-2.amazonaws.com/john-
pfeffer/An+Investor%27s+Take+on+Cryptoassets+v6
.pdf

7 | P a g e

the project is never explicitly focused on the
underlying crypto-asset value, we acknowledge that
high velocity coin supplies will tend to lower
valuations, and this has an impact on the storage
provider population to a degree and on miners
directly.

Valuations remain in line with service provider
expectations through velocity sinks, which are
processes that remove arbitrary amounts of the
supply from circulation. Alternative consensus
mechanisms like Proof-of-Stake attempt to address
velocity with large asset pools frozen to create
artificial scarcity but the process has unintended
consequences like centralizing the supply.

With SCP, contract functions slow velocity naturally
and create scarcity with the additional benefit of
blocking potential Sybil attacks, in which a
provider(s) controlling a large percentage of a
contract set could extort or damage customers.
Allowance and collateral are features that act in
concert to create an organic velocity sink as the
network reaches scale. At contract formation, clients
put coins into the contract in advance as an
allowance to cover a predicted amount of storage
space for a given period. As the contract progresses,
amounts are deducted from the Allowance as
payment until successful contract resolution or
termination for non-performance. The Allowance is
based on average storage pricing and occurs "under-
the-hood" of the customer software.

Storage providers ensure contract performance by
putting up collateral against the contract as
insurance contracts are faithfully carried out. If a
provider fails to successfully provide a storage proof,
collateral funds are deducted from the contract pool
and sent to an unspendable address. The financial
penalty prevents providers from claiming to possess
data they do not have or to gain control over any
client's contract set. At the time of this writing,
collateralization is set to approximately 1.5 to 2.5
times the cost of storage, though a 1:1 ratio likely
serves the purpose and will become the future
project recommendation.

1.3.9 Community Edition/
3rd Parties

To preserve decentralization, the project maintains
an open source Community Edition client for basic
functionality. This version may not provide full
distributed renter features but can be used by
project supporters for basic archival storage or as a
trial software.

Third party developers may also use the network as
it is based on an open protocol. SCP can use
incentives to prioritize customer traffic over 3rd
parties or could engage them for shared revenue
streams on the network.

1.3.10 Offensive/Illegal Material –
Terms of Service

Decentralization is a response to infrastructure
monopolized by entities who use the regulatory
environment to profitable advantage and sometimes
contrary to the spirit or intention of the rules. The
public understands a need to prevent exploitation
and the promotion of harmful illegal activities, but
also recognize data companies partnering with the
intelligence community or local police agencies to
share data behind the scenes is an overreach.

In the ongoing evolution of decentralization, some
proponents espouse absolute privacy and total
freedoms. SCP recognizes the path to privacy and
security requires a middle ground response. The
product Terms of Service will include clear guidelines
of what is legally permissible/acceptable on the SCP
network and customer acceptance and adherence
are required for continued use.

Some open source cloud storage protocols are
building tools to circumvent clear-headed rules, but
these will quickly find themselves relegated to
providing services for illegal content and the most
challenging online content. The business use case for
growing cloud storage can provide for privacy and
security of personal data while still limiting harmful
activities. The SCP product bridges the gap.

8 | P a g e

2 Implementation

2.1 Blockchain /
Payment Channel

2.1.1 Proof of Work
A key innovation of digital currency is cryptographic
signature-based ownership which streamlines
transfer of value at the cost of a potential double-
spend problem where an asset sent to one party can
then be sent again to a 2nd party. Traditional
currencies rely on central banks to provide
verification services to prevent double spending.
Decentralized currencies use public verification,
known as consensus on a blockchain. Entities known
as miners "vote" on collections of transactions (a
“block”) by guessing a discrete hash that is costly to
produce through a randomized, low probability
process requiring non-trivial trial and error on
average before a valid proof is generated. A
blockchain proof (as distinguished from a storage
proof) must be accepted by a majority of
participants and is appended to the previous block
creating a "chain" of all transactions. The net cost of
this proof-of-work consensus is the amount of
electricity burned in solving the puzzle. The expense
is large enough to ensure process validity
transparently.

Successfully providing a valid proof (finding a block)
generates a reward in coins used as currency on the
SCP storage network. To compensate for increasing
hardware speed and a varying number of miners,
puzzle difficulty is adjusted over time by a moving
average targeting a number of blocks with average
block time set to a 10-minute average. If too many
blocks are found in a period, difficulty increases to
make it harder to discover a solution with the
opposite occurring if too few blocks are found.
Adjustments are banded at 1/3rd of and 3x the
target block time with no individual block
adjustment greater than 0.4%. Because storage
contracts run for significant lengths of time, there is
little value to faster block times. Block sizes are
currently adequate for the amount of transaction
volume, but solutions for scaling will need to be

found in later years when the blockchain has
experienced growth.

2.1.2 Transactions
Outputs represent an amount of coins with an
identifier derived from transactions where output i
in transaction t is defined as: H(t||“output”||i). H is
a cryptographic hashing function and “output” is a
string literal. Every input must come from a prior
output, so an input is simply an output ID. Inputs and
outputs are also paired with a set of spend
conditions. Inputs contain the spend conditions
themselves, while outputs contain their Merkle root
hash9.

Spend conditions must be met to unlock coins from a
contract and include a time lock, a set of public keys
and the number of signatures required. An output
cannot be spent until the time lock has expired and
enough of the specified keys have added their
signature.

The spend conditions are hashed into a Merkle tree,
using the time lock, the number of signatures
required, and the public keys as leaves. The root
hash of this tree is used as the address to which the
coins are sent. In order to spend the coins, the spend
conditions corresponding to the address hash must
be provided. The use of a Merkle tree allows parties
to selectively reveal information in the spend
conditions. For example, the time lock can be
revealed without revealing the number of public
keys or the number of signatures required.

Cryptographic signatures are required for each
transaction and paired with an input ID, a time lock,
and a set of flags indicating which parts of the
transaction have been signed. The input ID indicates
which input the signature is being applied to. The
time lock specifies when the signature becomes valid

9 Champine, Luke. & Vorick, David. (2014) Sia: Simple
Decentralized Storage
https://sia.tech/sia.pdf

9 | P a g e

2.1.3 Contracts
Contracts specify the length of time an object
dataset is to be stored, likely defaulting to 30 days to
coincide with customer billing cycles and also specify
cost information not directly exposed to storage
customers but used as a key input to formulate
prices end-customers pay, including baseline storage
and bandwidth costs. Contract formation fees
charged to the client are slated for removal as an
extraneous process with providers covering
transaction fees as a cost of business. Storage proof
provisioning and scheduling is also included in the
contract.

Upon setup, the client software polls the network to
get a list of all available providers. Based on desired
attributes and requirements as set in the client, a
group of storage providers are chosen for contract
formation with more contracts created than are
ultimately used to cover provider churn and
availability. At present, contracts are limited to
single instance use. A major feature of the SCP
software is allowing multiple entities to access
contract sets from multiple machines, key to a real
public cloud storage competitor.

2.1.4 Storage Proofs
Storage proofs prevent a provider from faking or
deduplicating data to store something less than the
original agreement calls for. Providers submit proofs
within an agreed upon window. Valid proofs result in
a partial payment from the contract to the provider
up to the contract resolution or renewal. If a valid
proof is not provided, payment is instead sent to a
burn address. After a specified number of missed
proofs, contracts are invalidated, and the segment is
added to a calculation for repair.

Storage proofs do not have inputs or outputs; only a
contract ID and proof data consisting of a segment of
the original file and a list of hashes from the file’s
Merkle tree. Upon submission to the blockchain,
proofs become publicly auditable. Storage proofs
use a randomly selected segment and a random
seed for challenge window Wi is given by:
H(contract ID||H(Bi−1)) where Bi−1 is the block
immediately prior to the beginning of Wi.

10 | P a g e

2.2 Relayer

2.2.1 Distributed Renter
The key SCP innovation is an abstraction called
Relayer that provides distributed client functionality.
An application instance (or cluster of instances), the
Relayer may reside internally at a customer site or
run as an EC2 instance on AWS. Public Relayer
instances may be considered in the future but are
not currently in the roadmap. The Relayer provides
metadata efficiency using a database architecture
for key pair and Posix attribute information.
Metadata is indexed for searchability and easy
recoverability with the database itself uploaded to
the network for additional durability/redundancy
[metadata database]. Additional features are
included in Appendix A.

A distributed client allows multiple seats in an
organization to access the same object datasets
using a common set of contracts, key functionality to
provide true file and object sharing, permissioning
and other standard cloud storage features not
currently possible in other decentralized storage
projects.

In an example organizational setting, the HR
department creates a bucket and uploads a project
spreadsheet which the engineering department
modifies. They might then attach new CAD drawings
into the same bucket on the same contract set.
Access control lists or other permissioning
capabilities allow or deny read/modify/delete
capability for objects and buckets, both inside and
outside of the organization. The architecture also
enables features like lifecycle rules and advanced
versioning.

The Relayer changes everything.

2.2.2 Wallet/Exchange
Distributed cloud storage has discernable benefit
over traditional replicated clouds though inclusion of
a native crypto currency is likely to create friction in
adoption. Acquisition and custodianship of digital
assets in a rapidly evolving space represents a new
layer of risk for business. At the same time, there are

a myriad of horror stories from companies involved
in crypto-assets and people losing money to hackers
and fraudsters. Though the Relayer and storage
provider network operates on a native crypto coin,
companies are not exposed to it in normal
operation. Administrators have the ability to monitor
coin transactions and wallet operations but have no
custody responsibility or requirement to procure an
ongoing coin budget. On the SCP network, the utility
coin is a frictionless currency allowing providers to
get paid for provisioning storage.

Customer purchase and payment processes are
similar to traditional cloud storage providers (credit
card, purchase order thru a web-based interface,
etc). After receipt of payment, the software is
authorized to purchase coins directly via API which
are then locked into the contract set. As of this
whitepaper, three exchanges are live with more
expected throughout 2020. When more storage is
required and contract renewals occur, additional
coins are procured automatically at market prices.
There is no excess of coins exposed in wallets. A
multisignature wallet prevents customers from
accessing Relayer features beyond what has been
paid for and authorized by the application10.

2.2.3 Erasure Codes
Redundancy and durability refer to thresholds
before stored data is lost, damaged or unavailable.
The most common redundancy schema is replication
across multiple instances and ideally over a diverse
geographic area. RAID configurations replicate
datasets across drives in a single server, while
multiple server installations may replicate data
within a facility, but an event limiting access to the
datacenter removes access to all copies. Expanding
copies to other facilities is good but impacts cost and
performance with at least two full copies required
and increased bandwidth to upload and access
them. For acceptable redundancy, replication must
scale to 8x or higher and usually requiring copies
over a wide geographical footprint.

10 Multisignature
https://en.bitcoin.it/wiki/Multisignature

11 | P a g e

Erasure codes provide higher durability with
significant cost reduction through a mathematical
process of data segmentation that includes copies of
segments called parity pieces. The encoded
segments are sent to separate storage locations with
only a subset of pieces required to rebuild/download
the entire dataset. Reed-Solomon codes use
polynomial interpolation to create a scenario where
n is the minimum number of pieces for a complete
download, k is the number added parity pieces and
m is the total number of pieces or erasure shares.

For example, splitting data into 2 pieces and adding
2 parity pieces create 4 pieces, which we can
distribute to 4 separate locations. Of the 4, any two
are able to provide a complete download and any
two can fail with the data still fully available. In this
scenario, the data is expanded 2x or the same as a
single replication yet now two locations failing do
not result in data loss. Increasing the number of
pieces increases durability without impacting data
expansion. Standard cloud companies with a small
number of large facilities are limited in the number
of pieces they can distribute and are forced to cover
a large geographical area. They may use codes to
limit replication across servers to mitigate risk of
individual hardware failure, but usually within a
single datacenter.

Contrast with a network of thousands of hosts
scattered throughout a customer region. Large code
sets created locally with additional distant providers
to protect against regional catastrophe create
durability of 11 nines (99.999999999%) without
extreme cost increase. SCP is coded to 10/30 where
30 pieces are uploaded and any 10 can provide full
retrieval while the Relayer lets the customer decide
on a variety of capabilities with code factor
modification occurring automatically under the
hood.

Replication has benefit for the small and individual
file object repair and replace where erasure codes
require an entire segment piece be modified and re-
uploaded. Possible methods to address include
smaller piece size, caching at the Relayer and
possibly using replication for small files.

2.2.4 Durability Factors
Erasure codes create feature and performance
flexibility using a dynamic contract set configuration
in the Relayer client. Currently, a single client
accesses a static set of contracts. A distributed
contractor allows multiple client seats access to
groups of contract sets, each specifying separate
cost, performance, durability factors, access
permissions and lifecyle rules. Some of these sets
can have static properties with others dynamically
changing across renewals. Some example use-cases
follow.

Content Distribution Networks
Data produced and consumed at a single location
may perform well with a localized aggregation of
providers while a frequently accessed website with
global traffic requires a larger contract set and
provider sub-groupings located strategically to
accommodate traffic surges. An erasure code factor
with regional provider sub-groups strategically
located looks a lot like an ad-hoc content
distribution network (CDN) with costs far lower than
traditional replication to the network edge.

Dynamic Durability
Different types of data with varied access profiles
can also benefit. New and regularly produced data is
often accessed heavily when first available then
tapering over time with a long tail before reaching
archival status. Higher code factors initially make
more copies accessible over more providers ensuring
low latency and high availability. As data ages, the
number of providers in a contract set decay
gracefully until a lifecycle rule (eg 90 days) specifies
archival status with customer pricing changing along
with the rules. In a traditional cloud company, the
final step could incur additional egress fees while the
last group of SCP providers do simple contract
renewals.

Latency/Performance
Code factors impact latency and download
performance. The core protocol envisions
parallelism, but performance is not strong in
practice. Latency and download performance may
be enhanced through worker prioritization when file
objects are requested. Using a 10/90 code factor as
an example, any 10 pieces can create a full

12 | P a g e

download. Tasking all 90 for the initial download, the
fastest arriving pieces conclude with the rest
discarded. Instead of grading providers with a score,
the protocol should work through network
congestion or provider saturation with no priority
given to which provider ultimately sends the piece.
There is higher cost to additional providers and
higher bandwidth use with more discarded traffic.
Customers pay premium price for a tier of storage
providing ultra-fast downloads and the lowest
latency.

2.2.5 Custom Contract Sets
With the ability for multi-access contract sets and a
network of varied providers, features are possible
from custom contract sets based on desired provider
qualities. An example is performance tiering where a
target group of providers with fast downloads are
included. The Relayer provides robust ability to find
and select provider groups.

Compliance
Regulatory regimes are numerous and exist for a
variety of reasons. Storage providers have the option
to meet base compatibility for as many compliance
categories as customers require. As the network
provider, SCP facilitates inclusion and audit
processes to ensure provider sets follow a specific
regime. A global set of providers can be drilled down
to a custom contract set for individual compliance
regimes.

Hyrbrid and Multi-cloud Networks
Some traditional cloud services provide hybrid cloud
capability; publicly staged data meshed with onsite
storage installations. Reasons for keeping data
internal include securing the company’s most
sensitive assets, compliance with regulation and
keeping the most often accessed information closest
to producers and consumers.

The Relayer can group full erasure coded copies
inside the firewall and across corporate providers,
including provider software on normal desktop
clients. For large enterprises, it is possible to
configure enough hosts internally on desktop
equipment and potentially negating large storage

server arrays. The benefits are higher durability and
lower cost.

Most companies will prefer to continue using
storage servers already configured. For these, the
Relayer may communicate and use simple
replication on internal data while seamlessly
providing bucket and domain interfacing alongside
external data. At minimum, with full S3 compatibility
as outlined in the next section, companies can use
one of many established management tools to
combine internal data with SCP hosted data.

2.2.6 AWS S3 compatibility
Amazon's S3 object storage is a de facto standard in
cloud storage. With hundreds of 3rd party
applications and enterprise adoption/acceptance, S3
compatibility on distributed networks is a
requirement. Applications should gracefully
transition to the SCP network with as little as a URL
change. At minimum, a user must be able to choose
an arbitrary key, presented as a path to map data
pieces to specific hosts including object hierarchies.
Buckets are collections of objects included in these
hierarchies with individual objects inside of a given
Bucket also having a unique ID and path11.

The base API must include the following for file
object operations:

• Put - store in a given pathname
• Get - retrieve any given pathname
• List - listing of paths
• Delete - remove any given path.

as well as Bucket operations:

• Create
• Delete
• List

11 (2019) Amazon S3 REST API Introduction
https://docs.aws.amazon.com/AmazonS3/latest/API
/Welcome.html

13 | P a g e

2.3 Technical Proposals
The following are design proposals describing core
architecture making up Relayer and provider
functionality. This is the core innovation of the
project and the foundation that allows for a true
distributed cloud storage set of products.

2.3.1 Prepaid downloads
Creates a download budget within the confines of
the initial contract parameters, including partial and
full object downloads. When coupled with key-value
addressing and Posix metadata identifying objects as
“public” permissioned, this opens public file and
object access for websites and other shared access.
To facilitate this module, we add two Remote
Procedure Calls (RPC) to the Relayer server.

1. TopUpToken(token [32]byte,
resources) - creates/adds resources to
the token specified in the argument. Funds
are provided in a new contract revision with
the Relayer client calling the RPC and paying
the provider via the token for the budget
allocation. Resources are of two types:
number of bytes to download and number
of sectors that need to be accessed. Both
are used to calculate total cost of a
download and upon using the token,
available resources (number of sectors and
bytes used by download) are decreased on
the provider.

2. DownloadWithToken(token
[32]byte, sector, offset,
length) - clients download data internally
or publicly shared links with resources
drawn down from the token. Does not
create new a contract revision.

Benefits

Multiple entities may download data objects from a
contract simultaneously instead of each contract
being associated with a single user or instance. Using
tokens, one machine calls TopUpToken and then
all instances call DownloadWithToken using the
token. Most important, users do not require a full
blockchain installation or access to the contract to
use the token

• Users upload data, create link, encode
server names, tokens and initial sector ID
(the sector will store the list of sector IDs
with actual data), and give that link to
another user with simple addressing.

• Exposing the DownloadWithToken RPC
via websocket, all data on the contract is
available to Web applications running in
browser with users able to download
directly from the host network. A budget
can be specified allowing for
websites/applications to “pay” the host
network using TopUpToken RPC with a
small bit of Javascript embedded in the site
pages calling DownloadWithToken RPC
via websocket to download the data.

14 | P a g e

2.3.2 Deferred Contract Updates
In the current base implementation, object
uploading or modification in a distributed
environment is limited to a single entity/action with
contracts entering locked status as information is
added or revised. Examples are changing allowance,
prices, uploading, etc. Multiple concurrent object
actions from diverse sources is not possible. The
client(s) must wait for an action to conclude and the
contract to be unlocked before proceeding. To allow
for a distributed client, a deferred update
architecture is introduced for contract modification.

As with Prepaid Downloads, the token is used and
topped up as needed. A temporary key-value is
introduced on the provider, outside of the contract.
The Relayer references key-value pairs using a key
from a new CopyFrom RPC. The renter module has
full create, read, update and delete functionality
(CRUD) of keys on host storage where there is an
active and valid contract. Clients accessing the
contracts/providers upload data until the token is
depleted. A database structure (LevelDB) on the
provider holds uploaded data key-pairs.

Description
Storage in the key-value store is charged based on
amount used and time stored. The renter module
performs a token “top-up” in putting a specified
number of bytes/second on a new token. This
budget is specified automatically in the Relayer
configuration. Clients accessing the contract for
object operations on the key-value store call the
token. Storage providers track the remaining budget
on the token, removing associated key-values when
it reaches zero. Reading from the key-value store
requires the token for prepaid downloads and is
charged in the same way (downloaded X bytes =>
decrease token balance by X). The same model is
used for listing keys and the unit of value is "byte"
with pricing based on individual host prices. Token
balance is decreased when a record is created or
updated.

Each key in the key-value store is owned by the
token and only this token is allowed to remove or
update the record while any token can read it if it

knows the key.

Implementation

Storage Provider

The provider uses a local key-value store (e.g.
leveldb) to store key-value pairs. Each value must
include the ID of a parent token. A map from the
parent token lists all associated keys, total used
storage in bytes, last update timestamp and balance
at that time. Expiration can be derived from this
information with an In-memory priority queue to
trigger removal of keys when the expiration is
reached.

Client

New object data is immediately uploaded into the
key-value store on providers and initially held locally
as a temporary backup. When enough data
uploaded, a sector is created using CopyFrom and
the data is removed from the key-value store and
deleted from the local cache.

Micro-sectors

Tiny files are stored in one or multiple consecutive
16kB micro-sectors aligned inside normal 4MB
sectors. These objects are put into key-value stores
until the total size of an individual micro-sector
reaches 4MB and a new sector is created.

High Throughput

Temporary storage allows large data uploads and
parallelism in contract access. Data is uploaded from
multiple machines and/or multiple locations and put
into key-value storage. Clients send keys of uploaded
data to the coordinator machine (Relayer) which
handles contract updates with CopyFrom calls
(sending keys as sources of data) and removes the
keys from the key-value store.

15 | P a g e

2.3.3 Metadata Database
The foundation for a distributed client with multiple
customers accessing the same contracts is to store
object metadata in a database architecture.
CockroachDB is chosen for SQL architecture with
Pebble used for key-values. The database instance
store complex hierarchies like S3 buckets, objects,
filesystems and blocks.

Design

Relayer server instances run the following
components (as code modules within a single binary,
or as separate microservices):

• Contractor/Coordinator
• CockroachDB instance

o Pebble key-value storage
o File operations handler for Pebble

• Daemon with common list of contracts.
o Lock service

• S3-compatible overlay

Components interact with multiple machine
instances and platforms (completely scalable, any-
to-any) with clients on mobile or web applications
with standard authentication capability. Data
originates with clients and is sent to the Relayer as a
user request, which may include S3 objects, files or
file operations (FUSE). Reed-Solomon erasure coding
is applied to the data based on a redundancy factor
chosen by the client [EC] and the resulting data
shards are encrypted [encryption]. The Coordinator
gets corresponding contracts and sectors for data
and uploads to the storage provider network.

Keypair metadata is formed and combined with user
specified metadata such as user permissions. Keypair
metadata contains sector IDs, storage provider and
encryption information. It is everything required to
recover where a chunk of data is stored and how to
read it back from the network of providers.

Metadata components may be calculated before
data is uploaded to the provider network but
becomes valid only after it is uploaded (sector IDs do
not yet exist on the providers). In the case of FUSE
object modifications, if a part of a file is changed, the
metadata needs to be merged with existing

metadata of the unmodified parts of the file.
Otherwise this metadata itself is new full record.

Metadata is saved to a CockroachDB SQL database
instance built on top of a single key-value stores.
CockroachDB is paired with Pebble (a LevelDB-
inspired key-value store) with CockroachDB
performing high-level SQL logic and transforming the
information into a form Pebble can deal with. Pebble
provides custom file handlers to implement the
underlying file storage interface.

File handlers are a separate module which convert
file operations requested by Pebble into a remote
procedure call (RPC) to the storage network
providers through the daemon (to upload or
retrieve). File handlers also have a local file cache, to
return frequently requested files quickly from local
disk storage attached to the Relayer instead of
retrieving from the storage network. This approach
optimizes traffic and reduces latency. The Relayer
includes caching for data to return frequent files
from the disk.

A list of contracts must be common for all Relayer
instances (in the case of a cluster), to ensure each
contract is only used for writing by one process at a
time. A Lock Service is used to prevent conflicting
contract modification. Operations requiring specific
contracts (pebble handler) must wait on the Lock
Service similar to a mutual exclusion object (mutex).

Contract layout

Contracts reference two types of sectors: DB and
File. DB sectors are divided into three categories:

• Special first sector
The first sector stores a list of all DB sectors
(like MANIFEST file in databases). It also
stores any tiny files produced by the DB and
the data to inherit encryption keys from
(see encryption section below).

• SSTable sectors
These are unchangeable sectors
representing database's SSTables (one
sector for one SSTable). Sectors are 4MB
size. They are created when the DB log file

16 | P a g e

is sorted or when several sstables are
merged. Their size is fixed.

• Sectors for append-only file (DB's LOG file)
A log file (*.log) stores a sequence of recent
updates in binary form. Each update is
appended to the current log file. When the
log file reaches a pre-determined size
(approximately 4MB by default), it is
converted to a sorted table and a new log
file is created for future updates. These
sectors are used to store the LOG file. The
core protocol allows sector modification,
including partial which allows the Relayer to
implement object append operations.

Encryption of DB sectors

A stream cipher approach is used to encrypt
database sectors, using the key and utility data
(Nonce) from the first sector. The first sector stores a
set of nonces with each corresponding to one
SSTable sector. The encryption key provided by the
user and nonce is used to generate a 4MB-long key
to encrypt an individual SSTable sector. This key is
XOR'ed with the actual data to encrypt a sector.
Nonces are simple sequential numbers, increasing
each time the encryption happens in order to get
new keys. A similar method is used to encrypt the
first sector and special append-only sector.

Bootstrap

When the Relayer is first bootstrapped, a random
seed is generated to create a new wallet and a new
database instance without establishing contracts
with the host network. The Contractor forms
contracts from the storage provider database as
based on administration decisions, excluding
contracts already used by other Cockroach instances
(from SQL tables). The contracts are saved to a table
and the Relayer writes the ID of its Cockroach
instance to the first sector of each contract and
writes local database sectors to the hosts. The
contract is then reserved for the given Cockroach
instance globally.

Recovery

The Relayer is intended to keep a small amount of
local data, primarily tiny objects and some
frequently accessed items. Tiny files can be in-lined
inside the database with frequently accessed objects
cached. Recovering the Relayer instance includes the
database, contracts and all key-value stores using
the master password created when the Relayer is
first instantiated. When a full recovery is initiated,
the process locates contracts by querying the
network and downloading all database IDs from the
host network and repopulating the local database.

17 | P a g e

2.3.4 New RPCs
Erasure shares distributed over a large provider set
create an issue for small object handling. In the
present implementation, data shards are large
enough (4MB) to allow strong durability without a
large contract set. With files less than 4MB in size
(eg jpg images), client software requires a method to
identify the individual hash of a given shard and then
a way to access specific sectors within the shard.
Typically, the solution is to return the entire shard
and incurring bandwidth and new charges if the file
is modified and re-uploaded (saved).

New Remote Procedure Calls (RPC) mitigate this
issue. 4MB sectors on storage providers are divided
into 256 “micro-sectors”, each equal to 16KB. Small
files may occupy from 1 to the 255 of these special
sectors and allow for the creation of addressing to
locate and access any given file object. This
functionality creates an issue when some number of
micro-sectors are released due to file object deletion
or revision. A new process for sector
defragmentation is required to reuse this space
efficiently and do correct accounting on the host
nodes.

One method is to wait for a new file object small
enough to fit into the vacated space. A better
solution is to set up a condition when the number of
free micro-sectors is more than 50% of a full sector,
defragment by waiting for two 50%-free sectors and
copying the data to a new sector. The new RPCs to
accommodate are as follows:

• HashMicrosectors([]struct{Sec
torID, microsectorSize int})
([]struct{[]hashMicrosectors}
)

The RPC verifies individual micro-sectors while
microsectorSize specifies a fixed micro-sector
size without hardcoding a 16kB size. It takes a slice
of the sector’s ID along with the micro-sector size
then returns a slice of slices of the micro-sector
hashes. microsectorSize is a power of 2 from
64 (crypto.SegmentSize) to 4M
(modules.SectorSize). Returned hashes from
the micro-sectors are the same hashes from a

Merkle Tree that are on the level of given micro-
sector size in the tree.

• CopyFrom(*ModWriteRequest)
(LoopWriteResponse)

*ModWriteRequest = WriteRequest, with
different Action struct. Our Action is the same
except with Update/Append. Instead of data only,
it's either data or LoopReadRequestSection, or key
with (offset, length combination) in our key-value for
Deferred Contract Updates. If CopyFrom receives a
request to return the hashes of one or more micro-
sectors, it returns them before reading signature
from renter. CopyFrom is used to copy sectors
without having to download/reupload them.

Golang describing new RPC configuration:
https://play.golang.org/p/u1fYMyd2Ran

https://play.golang.org/p/u1fYMyd2Ran

18 | P a g e

2.4 Network Development

2.4.1 Incentives
In a distributed sharing economy network,
independent actors are marshalled to provide
resources in exchange for financial incentives. They
deploy assets already in service or bring new
equipment online if earnings suggest profitability.
Baseline prices are established via market
mechanism that allow providers to set the price of
storage arbitrarily with competition for contracts
guaranteeing an aggressive floor. Centralized cloud
providers enjoy large gross margins, distributed
networks drive prices closer to actual cost. Or, as an
individual once quipped:

"Your fat margin is my opportunity"

 Jeff Bezos

Incentives align goals of providers, customers and
the network operator while improving price
discovery, performance and capacity. Incentives are
decentralizing as providers are never required to
accept the additional funds and decide individually
what they are willing to do to meet financial goals.
Networks without strong incentives beyond
standard storage payments are destined to fail.

Increased rewards begin on adherence to project
guidelines. The first of these binds storage pricing to
a range in the face of potentially rapid and
significant changes in underlying crypto-asset prices.
This will be quickly ingested into the SCP protocol
with hosts able to set auto-pricing in line with
project recommendations directly in the provider
software. As the program evolves, provider analytics
will allow the project to incentivize virtually every
aspect of the provider profile and incorporate
incentives directly into the provider software where
possible.

Incentive tiering also envisions provider self-
identification (equipment inventory and personnel),
performance stratification, capacity and geographic
need as rewardable behavior. Network inventory,
mapping and performance monitoring capability at
SCP headquarters will lead providers to more
lucrative contracts and guide them on how to

capture maximum reward. Compliance regimes such
as HIPAA could require custom firewalling or
certifications beyond normal provisioning.

The initial reward structure encourages provider to
dedicate capacity and adhere to a pricing floor with
a low coin price based on the emission schedule and
market conditions. The metrics used in preliminary
calculations include:

a) Adherence to guideline schedule – Floor
pricing, collateral multiple and minimum
amount of capacity

b) capacity up to a 20TB ceiling – meant to
combat thin provisioning for unfair
incentive draws

c) amount stored – can be gamed through the
API and requires tuning

Incentives are drawn from a pool established at
genesis. Funding not ultimately driven into contract
formation will evolve to a revenue-sharing
percentage drawn from customer billings. Provider
profitability is critical to project success and
incentives will always be a component of provider
acquisition and curation.

With multiple decentralized storage projects in
development and on the horizon, intense
competition for available storage makes provider
capture and retention dependent on profitability.
Projects/products unable to provide lucrative
returns may never achieve network effects required
to compete on a serious level. At minimum, less
competitive networks will incur higher churn rates as
providers seek the highest yield on storage assets.

2.4.2 Churn/Object Repair
Networks experience data loss due to component
failure, misconfiguration and abandonment. Cost of
remediation is measured in equipment replacement,
personnel cost, downtime opportunity cost and
bandwidth required to restore lost durability.
Replication strategies may require entire datasets
uploaded to new media, either another server in the
same facility (minimal bandwidth cost) or in another
datacenter (higher bandwidth cost). Centralized
providers tend to be well-prepared for unplanned

19 | P a g e

equipment failure and outages, maintaining spares
and proactive equipment swap-outs though it is
difficult to be prepared for a major facility or region
outage.

Distributed P2P networks experience unplanned
outages at a higher frequency with the same
potential challenges and also losses from providers
exercising freedom to put assets to use in some
other capacity. This unplanned provider loss is
referred to as "churn" with the protocol specifying a
lost data threshold before a repair operation is
called. Because uploaded data is segmented,
encoded and then encrypted, data copy from a
nearest neighbor is not easily accomplished. It would
also require trust that providers not collude to
deduplicate data. Because of this, repairs on the
distributed network are expensive operations,
requiring full copies of data at the source client for
re-encode and re-encryption before re-uploading to
new providers.

Configurable durability is again the most viable
solution with the baseline code factor set to ensure
desired durability AND then padding to cover
expected churn rates. As the network grows, it will
be possible to set baseline durability just ahead of
measured repair rates so that data seldom gets
called for expensive repairs. The cost increase with
higher durability should nearly always be less than
the cost to repair for most data storage profiles.
Even so, over longer periods of time contract sets
will deteriorate, and data will need to be repaired to
new providers. The Relayer should track these
potential repair segments and warn data owners in
advance so that costs can be mitigated.

2.4.3 Block and Network Metrics
Key to a robust network is metrics on as many
surfaces as possible. For standard block exploration,
the project contemplates a full re-write of the
current explorer. Before that is possible, a transition
to stateless modules is required first to ensure
accurate block and transaction reporting of contract
information.

Network exploration is a larger segment and SCP will
devote significant resources to ongoing data

collection and presentation for customers and
providers. Again, providers willing to include small
inventory analysis payloads in provider software will
earn the most incentives with more granular and
precise inputs to the system. Customer IT teams
require complete network maps and profile
information to help build provider groups able to the
meet specific needs.

2.4.4 Provider and Network
Development

Network development and growth is a project
priority. No truly decentralized P2P cloud storage
network suitable for enterprise storage exists as of
this writing. Valuable insight can be drawn from file
sharing technologies like Napster, Gnutella and
Bittorrent but key assumptions may prove
inadequate over time and at scale. Providers around
the globe face a variety of conditions that could
make the product more or less viable including
standard ISP capabilities, operational expenses and
geopolitical concerns. In mainland China, ISPs are
legally held responsible for activity on the network, a
major challenge to decentralized storage projects
where privacy is built-in and network contents are
not easily identifiable.

Provider Software
The current provider software is immature and
requires ongoing tweaking and monitoring by
providers for consistent performance. Future
versions will make use of containers extensively for a
more consistent installation experience and lowered
support burden. The software should allow for
control of multiple provider installations assuming
one per machine. And provider software requires
better accounting capability to determine
profitability and for tax reporting.

Hardware Development
A separate arm of the project is working on
lightweight provider client hardware initially
powered by already available single board
computing (SBC) devices. These "appliances" will
function with simple web-based interface and
limited ability to alter configuration parameters.
These may be offered to the public on an affiliate

20 | P a g e

model and preconfigured with automatic pricing
built in. The provider can choose between a crypto-
asset reward or durable storage on the network.
Beyond simple appliances, the hardware division
should evolve to larger configurations starting with
NAS devices and perhaps partnering with a larger
vendor for rack-based units.

2.4.5 Latency / Bandwidth
Constraints

A wide spectrum of provider performance is forecast
for the network at scale with an unusually large
percentage of home-based installations and weak
connectivity. Consumer-grade ISP plans often
provide asymmetric connections, limiting upload
performance which translates to customer
downloads. Limits on the amount of data transferred
(caps) are also common leading to higher costs or
periodic unavailability for individual providers.
Finally, this group of provider are often less diligent
in node upkeep, preferring a "set it and forget it"
process. The benefit is lower cost storage with these
"hobby hosts" making up a significant portion of
competitive costing advantages over centralized
services.

Though latency to any given provider is directly tied
to customer location, the distribution of latencies
over contract sets should converge in allowing
customers to delegate levels of responsibility based
on desired performance characteristics and available
budget. A core service provided by the project is
network analytics, segmentation, incentivizing
providers and creating actionable intelligence that
can be fed into the Relayer configuration.

21 | P a g e

2.5 Appendix A
Functional Requirements

2.5.1 Relayer
Overview
– Browser or app-based interface
– REST API for custom interface – customers and 3rd
party applications
– Storage tiers; static and dynamic
– User authorization/authentication
– Logging, reporting capability
– Public performance/availability data replication

Installation
– Cross-platform compatibility
– Container orchestration – customer one touch
installation

Storage Network Interaction
– Real-time network mapping, identification and
monitoring across sia-based networks
– Ongoing QoS audit of all storage nodes
– Network reporting over specified periods
– Ad-hoc storage node groupings for classes
– Contract creation/renewals with Sia-based
network hosts
– Automatically form new contracts upon
completion as required
– Upload/Download/Replace files on storage nodes
– Automatic instance backup of customer metadata
and upload to network
– Ongoing analytics (csv creation) for class analysis
and lifecycle determination
– Ongoing file audits
– Repair operations on failed shard audits
– Node whitelist/blacklist
– Requires no customer access to crypto coin
transactions

Database
– Store netmap results for a defined period
– Store individual customer metadata, user info,
credentials
– Store bucket metadata
– Cache frequently accessed files (if

necessary/possible, needs evaluation)
– Incremental backups are uploaded to the most
durable node tier for replication

Buckets/Objects
– Key functionality = Create, Delete, List. Every
bucket has a unique name/id
– Top level namespace addressing
/domain/bucketname
– Bucket properties include owner, date created,
date edited
– Allow customer to add, delete, copy, replace,
download objects (files)
– User permissions (upload, delete, replace,
download, view)
– File Versioning at bucket or object level
– CORS configuration (XML file) for all buckets
– “tags” on buckets and/or objects
– Lifecycle rules at bucket or object level to move
from one node tier level to another

Exchange
– Customer ID account creation (if allowing 1 to 1
relationships)
– Interact with other Relayer exchange clients
– Interact with centralized Exchange APIs
– Atomic swaps of sia-based currencies
– Automatic wallet top ups based on use
patters/predicted storage use
– Wallet creation for Relayer customer on all sia-
based networks
– Provide transaction reporting, logging and balance
information
– Requester pays

2.5.2 Client
– Provide interface for bucket and file management
– Allow bucket create, rename, delete
– Allow upload, delete, replace, download, view
capabilities
– Allow permissions settings per file or per bucket
– Allow Lifecycle settings per file or per bucket
– Provide accounting features
– Provide basic network monitoring features
– Use SAML for a Single Sign-on capability

22 | P a g e

– 2 Factor authentication

2.5.3 Network
– Host container software installs
– Best practices guidelines

– Storage node incentive program (storage used,
capacity offered)
– Node/network performance dashboards
– Minimum configuration/Recommended
configuration

References
Amazon S3 REST API Introduction
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html

Buss, Sebastian & Becker, Dennis & multiple others (2019) Digital Economy Compass
Retrieved from https://www.statista.com/study/52194/digital-economy-compass/

Champine, Luke. (2016) MIT License
https://gitlab.com/NebulousLabs/Sia/blob/master/LICENSE

Champine, Luke. & Vorick, David. (2014) Sia: Simple Decentralized Storage
https://sia.tech/sia.pdf

Mendoza, N.F. (2019) Data breaches now cost companies an average of $1.41 million.
https://www.techrepublic.com/article/data-breaches-now-cost-companies-an-average-of-1-41-million/

Multisignature
https://en.bitcoin.it/wiki/Multisignature

Nag, Syd. (2019) Market Share Analysis: IaaS and IUS, Worldwide, 2018.
https://www.gartner.com/document/3947169?ref=solrAll&refval=225669178&qid=ee7cc875a489136e93c3a8

Nakamoto, Satoshi. (2008) Bitcoin: A Peer-to-Peer Electronic Cash System
https://bitcoin.org/bitcoin.pdf

Pfeffer, John. (2017) An (Institutional) Investor’s Take on Cryptoassets
https://s3.eu-west-2.amazonaws.com/john-pfeffer/An+Investor%27s+Take+on+Cryptoassets+v6.pdf

Smith, Eileen. (2019) Worldwide Public Cloud Services Spending Will More Than Double by 2023.
https://www.idc.com/getdoc.jsp?containerId=prUS45340719

	Abstract
	1 Project Information
	1.1 Introduction
	1.2 Baseline Features
	1.2.1 Consensus
	1.2.2 Payment Channel/ Smart Contracts
	1.2.3 Erasure Codes
	1.2.4 Encryption
	1.2.5 Licensing/Compensation

	1.3 Business Model
	1.3.1 Competition
	1.3.2 Market Opportunity
	1.3.3 Compliance
	1.3.4 Service Level Agreements
	1.3.5 Economics
	1.3.6 Airdrop
	1.3.7 ScPrimefunds
	1.3.8 Supply and Coin Velocity
	1.3.9 Community Edition/ 3rd Parties
	1.3.10 Offensive/Illegal Material – Terms of Service

	2 Implementation
	2.1 Blockchain / Payment Channel
	2.1.1 Proof of Work
	2.1.2 Transactions
	2.1.3 Contracts
	2.1.4 Storage Proofs

	2.2 Relayer
	2.2.1 Distributed Renter
	2.2.2 Wallet/Exchange
	2.2.3 Erasure Codes
	2.2.4 Durability Factors
	2.2.5 Custom Contract Sets
	2.2.6 AWS S3 compatibility

	2.3 Technical Proposals
	2.3.1 Prepaid downloads
	2.3.2 Deferred Contract Updates
	Description
	Implementation
	Storage Provider
	Client
	Micro-sectors
	High Throughput

	2.3.3 Metadata Database
	Design
	Contract layout
	Encryption of DB sectors
	Bootstrap
	Recovery

	2.3.4 New RPCs

	2.4 Network Development
	2.4.1 Incentives
	2.4.2 Churn/Object Repair
	2.4.3 Block and Network Metrics
	2.4.4 Provider and Network Development
	2.4.5 Latency / Bandwidth Constraints

	2.5 Appendix A Functional Requirements
	2.5.1 Relayer
	2.5.2 Client
	2.5.3 Network

	References

