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Abstract 
Twenty-five years after the first public Internet trials, the long promise of distributed global networking has taken 
an unexpected turn with a small group of Silicon Valley hegemons in control of our connected world. Instead of 
open access in a competitive environment, the future of exponentially growing shared data creation, storage and 
distribution has been captured. Large-scale data breaches, network outages and government intrusion lead 
headlines while managers have little choice but to migrate critical business data to the cloud as benefits far 
outweigh even the most severe risk.  

But it doesn't have to be this way. We can reclaim the promise of distributed tech and return control back to the 
creators. ScPrime (pronounced ess-cee-prime and short-handed as SCP) is building a decentralized cloud storage 
product on a fully distributed network. This paper describes our core technical innovation, network development 
and the business model we'll use to recapture the promise of globally interconnected computing.
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1 Project Information 

1.1 Introduction 
 

The Problem 
Privacy, Security, Price 
A handful of public cloud storage companies hold a 
decisive share of enterprise data, with Amazon's 
AWS IaaS product controlling over 49% of the 
market 1. Aggregating data in huge, purpose-built 
facilities is reversion to the client-server model on a 
global scale with increased risk of damaging data 
breach, monopolistic pricing and questions of data 
ownership. Business managers need alternatives 
that return control to the customer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Nag, Syd. (2019) Market Share Analysis: IaaS and 
IUS, Worldwide, 2018. 
https://www.gartner.com/document/3947169?ref=s
olrAll&refval=225669178&qid=ee7cc875a489136e93
c3a8 

 

 

 

The Solution 
 a Secure Cloud Provider 
SCP is a decentralized mesh network of independent 
storage providers compensated for dedicating trivial 
amounts of disk space to create a globally connected 
"datacenter". Market-based incentives tied to 
distributed client access remove centralized control. 
The product weaves together strong encryption, 
data sharding, cryptographic signatures and a 
publicly auditable blockchain to ensure the highest 
security and durability of customer data in a self-
organizing and highly cost-competitive environment.  
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1.2 Baseline Features 
The foundation of SCP is an open source protocol 
with early feature abstraction. Leveraging open 
source development is cost effective in allowing the 
project to quickly move to proprietary innovation 
and tangible product deliverables.  The following 
features form the basis we build on:  

1.2.1 Consensus 
A distributed ledger of financial transactions 
between mostly anonymous participants is publicly 
validated by specialized computers (Proof-of-work) 
competing to bundle "blocks" of transactions, 
colloquially referred to as mining2. SCP began when 
the open source project centralized this validation by 
forcing participants to purchase equipment solely 
from a company owned by the development team, 
thus orphaning a large inventory of equipment 
capable of providing decentralized blockchain 
verification from anyone and anywhere in the world. 
The result of a publicly verified transaction 
consensus is known as a blockchain. 

1.2.2 Payment Channel/ 
Smart Contracts 

The project uses a state channel architecture and 
P2P networking for anonymous contract formation 
between storage clients and storage providers. 
Contracts stage data uploads via agreement on 
price, length of time and other criteria. Following a 
successful negotiation and data upload, providers 
submit regular proof that data is held as contracted. 
Publicly auditable transactions ensure valid proof 
results from ongoing contract payments while the 
inability to furnish proof results initially in non-
payment and ultimately contract invalidation.  

Contracts include a root cryptographic hash 
composed of individual segments that are hashed 
into a Merkle tree. The root hash along with the data 
object size is used to verify storage proofs. Contracts 
specify duration, challenge frequency and payouts. 
Each client creates contracts with many providers 
based on desired price and performance 
characteristics. Finally, contracts include a fee 

 
2 Nakamoto, Satoshi. (2008) Bitcoin: A Peer-to-Peer 
Electronic Cash System 
https://bitcoin.org/bitcoin.pdf 

deduction with the proceeds accruing to a secondary 
crypto token3 

1.2.3 Erasure Codes  
Reed-Solomon erasure codes distribute data 
mathematically across a set of sectors, drives, nodes 
or computers for higher durability and efficiency 
over simple replication. Data is fragmented, 
expanded and encoded with redundant parity 
pieces, which are stored across a set of locations 
where statistically significant numbers may failover 
before original data is unrecoverable.  

1.2.4 Encryption 
The greatest challenge for cloud storage providers is 
privacy and security of client data. The average cost 
of an enterprise data breach is just under $1.5m in 
an environment companies have complete control 
over4. Moving to the cloud involves relinquishing 
control and trusting another firm. The issue is 
compounded in populating data on platforms hosted 
by mostly anonymous and self-interested actors.  

The solution is an enforced end-to-end encryption 
before allowing data onto the network. Client-side 
encryption creates unique engineering challenges 
but is the basis for truly secure and private data that 
is protected from unauthorized access. As of this 
writing, most traditional cloud storage companies do 
not enforce end-to-end encryption.  

1.2.5 Licensing/Compensation 
The base code is freely and publicly usable on a non-
restrictive MIT open source license. SCP intends 
significant modification to the codebase for our final 
software stack. While there is no specified 
compensatory requirement or agreement, SCP 
supports ongoing development of the base software 
through two cryptocurrency grants. The SCP product 
will be a mix of open source and proprietary code for 

 
3 Champine, Luke. & Vorick, David. (2014) Sia: Simple 
Decentralized Storage 
https://sia.tech/sia.pdf 
4 Mendoza, N.F. (2019) Data breaches now cost 
companies an average of $1.41 million. 
https://www.techrepublic.com/article/data-
breaches-now-cost-companies-an-average-of-1-41-
million/ 
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our own core development. The entire license 
follows5. 

The MIT License (MIT) 
 
Copyright (c) 2016 Nebulous Inc. 
 
Permission is hereby granted, free 
of charge, to any person obtaining 
a copy of this software and  
associated documentation files (the 
"Software"), to deal in the 
Software without restriction, 
including without limitation the 
rights to use, copy, modify, merge, 
publish, distribute, sublicense, 
and/or sell copies of the Software, 
and to permit persons to whom the 
Software is furnished to do so, 
subject to the following 
conditions: 
 
The above copyright notice and this 
permission notice shall be included 
in all copies or substantial 
portions of the Software. 
 
THE SOFTWARE IS PROVIDED "AS IS", 
WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED, INCLUDING BUT 
NOT LIMITED TO THE WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE AND 
NONINFRINGEMENT. IN NO EVENT SHALL 
THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR 
OTHER LIABILITY, WHETHER IN AN 
ACTION OF CONTRACT, TORT OR 
OTHERWISE, ARISING FROM, OUT OF OR 
IN CONNECTION WITH THE SOFTWARE OR 
THE USE OR OTHER DEALINGS IN THE 
SOFTWARE. 
 

  

 
5 Champine, Luke. (2016) MIT License 
https://gitlab.com/NebulousLabs/Sia/blob/master/LI
CENSE 
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1.3 Business Model 
Public cloud services and infrastructure are growing 
exponentially with compound annual growth rates 
(CAGR) of 20% forecast through 2022 and increasing 
beyond6. Even with potential risk, enterprise is 
transitioning from onsite capital expense outlays and 
personnel to predictable operational expenses in the 
cloud. Competition is expected from incumbent 
providers and new technology, yet the opportunity is 
so large there will likely be many winners. The 
successful competitors will start by meeting basic 
requirements.  

• Compliance regimes for data access, 
retention and removal 

• Service level agreements (SLAs) to 
guarantee performance 

• Compatibility with de facto standards. 

 

 Figure 1- Statista Digital Market Outlook 

 

 

 

 
6 Smith, Eileen. (2019) Worldwide Public Cloud 
Services Spending Will More Than Double by 2023. 
Retrieved from 
https://www.idc.com/getdoc.jsp?containerId=prUS4
5340719 

1.3.1 Competition 
Amazon, Microsoft and Google account for an 
overwhelming percentage of the Enterprise cloud 
storage market with breathtaking scale across the 
planet. Individual AWS datacenters house millions of 
servers running custom networking software and 
routing equipment in the single most profitable 
Amazon business segment and cost the company 
$500-600m to build. Though thousands of cloud 
storage brands exist, the majority simply rebrand 
and resell AWS capacity under a white label 
licensing.  

Competing with an entrenched, dominant 
incumbent requires superior privacy, security and 
performance delivered at a significantly lower price. 
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1.3.2 Market Opportunity 
Predicted exponential growth begins with 
approximately 40 zettabytes (1 zettabyte equals a 
billion terabytes) of globally created data in 2018 
leading to a fifteen-fold increase by 20307. Falling 
costs and better security enable storage of data 
previously discarded or kept on less reliable and 
inexpensive media. One example are daily backup 
activities previously reserved for onsite tape 
mechanisms with media transported to secure 
offsite locations for preservation. While the current 
providers will spend on new installations, storage 
capacity must also come from new and novel 
directions if the need is to be met. 

Companies expect a simple product with an easy 
transition from internal storage configurations or 
competing cloud services. The SCP product provides 
complete (S3) compatibility, taking advantage of a 
well-developed ecosystem of 3rd party tools. 
Customers are never exposed to underlying crypto-
currency acquisition or custody, removing a major 
hurdle to adoption for projects unable to provide 
mainstream strategies. 

Beyond simple storage lies even larger markets for 
platform, infrastructure and software as-a-service 
(IaaS, PaaS, SaaS). If basic object storage is the price 
of admission, the applications that run on top 
represent profitable avenues far beyond the initial 
goals of SCP.  

 

1.3.3 Compliance 
Data creators are increasingly required to adhere to 
a panoply of compliance regimes based on data 
protection, retention policies, privacy requirements, 
geographic region and more. A recent high-profile 
example is the European General Data Protection 
Regulation (GDPR) which gives a strict set of 
guidelines for enterprise use of personal data. The 
network must provide a transparent mechanism 
with auditability to meet compliance requirements. 

 
7 Buss, Sebastian & Becker, Dennis & multiple others 
(2019) Digital Economy Compass 
Retrieved from 
https://www.statista.com/study/52194/digital-
economy-compass/ 

Independent storage providers on the network who 
are willing to meet certain standards will enjoy 
potentially higher earnings by forgoing anonymity 
and/or allowing inventory and performance 
monitoring tools. The Relayer will include the ability 
to identify and list storage provider profiles for audit. 

 

1.3.4 Service Level Agreements 
Most decentralized projects/products seek to 
provide anonymous capability while bypassing 
traditional responsibilities. The customer must 
accept given levels of performance and availability 
without recourse. SCP, as the operator of a 
decentralized network can create Service Level 
Agreements and compensate on performance not 
meeting a set standard. This is achieved with a 
thorough inventory of the provider network, using 
incentives to gain specific performance and a clear 
presentation of expectation when choosing a group 
of providers for any given contract-set.  

 

1.3.5 Economics 
At project startup, a new blockchain instantiated 
from a “genesis” block emitted 300,000 SCP coins to 
miners solving the cryptographic riddle. The coin 
emission schedule decays by a single coin per block 
until reaching 10,000 SCP (approximately 5.5 years 
from genesis) where it is expected to remain in 
perpetuity, creating a nonlinear inflation schedule. A 
project development fee starting at 20% of the block 
reward and declining over a two-year period was set 
aside for developer cost. Based on general market 
conditions, this fund cannot suffice, and private 
investment is required to complete the product. 

A “pre-mine” of coins created in the genesis block is 
meant to reward and incentivize potential 
supporters. A breakdown follows: 

• 300,000,000 to Nebulous, Inc for the 
original development of Sia.  

• 51,000,000 to mining pool operators to 
assist with maturity payout 

• 200,000,000 for initial project expenses 
• 1,750,000,000 for the storage provider 

incentive program 
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• 628,000,000 for exchange listing fees  
• 7,622,000,000 earmarked for an “airdrop” 

to Sia coin holders 

1.3.6 Airdrop 
Providing free coins to progenitor addresses has 
precedent in crypto projects, with "airdrops" 
encouraging support or a lack of hostility from 
parent project supporters. There is little evidence 
these actually accomplish the goal, but SCP decided 
on a 1:5 ratio airdrop. For every 5 SC coins, 1 SCP 
coin was created in the Genesis block and awarded 
in a scripted transaction send based on a snapshot of 
addresses taken at block height 179,000 of the 
original project. Slightly more than three billion coins 
were sent to more than 650,000 individual addresses 
without precondition.  

Careful study revealed an inordinate amount of the 
original project's coin supply (60%) is held in less 
than 35 addresses from the snapshot richlist. A 
determination was made these are centralized 
exchange addresses and a conclusion reached that 
coins sent to these addresses would likely never 
reach actual owners and thus were moved into a 
cold wallet containing 4,525,377,327 SCP. As of this 
writing, the coins represent less than 18% of the 
outstanding supply. When the supply reaches a 
nominal “ceiling” of 55B SCP sometime in 2023, the 
wallet will represent approximately 8% of the total 
supply. The coins are earmarked toward ensuring 
the success of the product, potentially through 
distribution to investors, network incentives to 
storage providers or sending them to an 
unspendable address (known as coin burn). The 
community will be included in the decision as it is 
made. 

The address of the cold wallet for 
inspection/monitoring is 
f21eacb5c9d64902d2546efa2de9e8d379488895b92
44fcc4ec8bd0817e0af8bdbe07f724463.  

 

 

 

 

1.3.7 ScPrimefunds 
There are two cryptoassets; SCP utility coins used in 
contracting between client software and the 
distributed provider network, and an equity token 
not publicly available. 10,000 ScPrimefunds (SPF) 
were airdropped on a 1:1 basis to original project 
holders. They are predominantly held by the 
development company, Nebulous Inc. An additional 
20,000 SPF were minted for the ScPrime project.  

These tokens exist as equity in the network and earn 
a percentage of every transaction between clients 
and providers. The purpose is to provide a long-term 
revenue stream for development and possibly as 
another pool for incentives.  

Each SPF earns 0.000005 from contract transactions 
and the fees are automatically pulled from contracts 
and sent to the SPF addresses. 2500 SPF are set 
aside as part of a private equity raise, with another 
2500 set aside for team distribution and an option 
pool for new employees.  

 

1.3.8 Supply and Coin Velocity 
When thinking about whether a protocol’s token can 
capture and sustain economic rent, what is relevant 
is whether the mining industry maintaining the 
protocol’s blockchain is competitive, not the 
stickiness of users. The mining industry supporting 
any decentralized protocol must be a competitive 
market; otherwise the protocol isn’t decentralized8. 

Products based on crypto-assets may suffer from a 
velocity problem limiting coin value and possibly 
leading to a lack of miners willing to spend electricity 
unprofitably. In the case of SCP decentralized cloud 
storage, coins purchase storage space over specified 
time periods in a contract process underneath the 
client software. There is no reason or ability for our 
storage customers to buy and store more coins than 
needed for storage use. Coins are purchased on the 
open market and provisioned automatically. While 

 
8 Pfeffer, John. (2017) An (Institutional) Investor’s 
Take on Cryptoassets 
https://s3.eu-west-2.amazonaws.com/john-
pfeffer/An+Investor%27s+Take+on+Cryptoassets+v6
.pdf 
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the project is never explicitly focused on the 
underlying crypto-asset value, we acknowledge that 
high velocity coin supplies will tend to lower 
valuations, and this has an impact on the storage 
provider population to a degree and on miners 
directly. 

Valuations remain in line with service provider 
expectations through velocity sinks, which are 
processes that remove arbitrary amounts of the 
supply from circulation. Alternative consensus 
mechanisms like Proof-of-Stake attempt to address 
velocity with large asset pools frozen to create 
artificial scarcity but the process has unintended 
consequences like centralizing the supply. 

With SCP, contract functions slow velocity naturally 
and create scarcity with the additional benefit of 
blocking potential Sybil attacks, in which a 
provider(s) controlling a large percentage of a 
contract set could extort or damage customers. 
Allowance and collateral are features that act in 
concert to create an organic velocity sink as the 
network reaches scale. At contract formation, clients 
put coins into the contract in advance as an 
allowance to cover a predicted amount of storage 
space for a given period. As the contract progresses, 
amounts are deducted from the Allowance as 
payment until successful contract resolution or 
termination for non-performance. The Allowance is 
based on average storage pricing and occurs "under-
the-hood" of the customer software. 

Storage providers ensure contract performance by 
putting up collateral against the contract as 
insurance contracts are faithfully carried out. If a 
provider fails to successfully provide a storage proof, 
collateral funds are deducted from the contract pool 
and sent to an unspendable address. The financial 
penalty prevents providers from claiming to possess 
data they do not have or to gain control over any 
client's contract set. At the time of this writing, 
collateralization is set to approximately 1.5 to 2.5 
times the cost of storage, though a 1:1 ratio likely 
serves the purpose and will become the future 
project recommendation. 

 

1.3.9 Community Edition/ 
3rd Parties 

To preserve decentralization, the project maintains 
an open source Community Edition client for basic 
functionality. This version may not provide full 
distributed renter features but can be used by 
project supporters for basic archival storage or as a 
trial software.  

Third party developers may also use the network as 
it is based on an open protocol. SCP can use 
incentives to prioritize customer traffic over 3rd 
parties or could engage them for shared revenue 
streams on the network.  
 

1.3.10 Offensive/Illegal Material – 
Terms of Service 

Decentralization is a response to infrastructure 
monopolized by entities who use the regulatory 
environment to profitable advantage and sometimes 
contrary to the spirit or intention of the rules. The 
public understands a need to prevent exploitation 
and the promotion of harmful illegal activities, but 
also recognize data companies partnering with the 
intelligence community or local police agencies to 
share data behind the scenes is an overreach.  

In the ongoing evolution of decentralization, some 
proponents espouse absolute privacy and total 
freedoms. SCP recognizes the path to privacy and 
security requires a middle ground response. The 
product Terms of Service will include clear guidelines 
of what is legally permissible/acceptable on the SCP 
network and customer acceptance and adherence 
are required for continued use.  

Some open source cloud storage protocols are 
building tools to circumvent clear-headed rules, but 
these will quickly find themselves relegated to 
providing services for illegal content and the most 
challenging online content. The business use case for 
growing cloud storage can provide for privacy and 
security of personal data while still limiting harmful 
activities. The SCP product bridges the gap.  
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2 Implementation 
 

2.1 Blockchain /  
Payment Channel 

2.1.1 Proof of Work 
A key innovation of digital currency is cryptographic 
signature-based ownership which streamlines 
transfer of value at the cost of a potential double-
spend problem where an asset sent to one party can 
then be sent again to a 2nd party. Traditional 
currencies rely on central banks to provide 
verification services to prevent double spending. 
Decentralized currencies use public verification, 
known as consensus on a blockchain. Entities known 
as miners "vote" on collections of transactions (a 
“block”) by guessing a discrete hash that is costly to 
produce through a randomized, low probability 
process requiring non-trivial trial and error on 
average before a valid proof is generated. A 
blockchain proof (as distinguished from a storage 
proof) must be accepted by a majority of 
participants and is appended to the previous block 
creating a "chain" of all transactions. The net cost of 
this proof-of-work consensus is the amount of 
electricity burned in solving the puzzle. The expense 
is large enough to ensure process validity 
transparently. 

Successfully providing a valid proof (finding a block) 
generates a reward in coins used as currency on the 
SCP storage network. To compensate for increasing 
hardware speed and a varying number of miners, 
puzzle difficulty is adjusted over time by a moving 
average targeting a number of blocks with average 
block time set to a 10-minute average. If too many 
blocks are found in a period, difficulty increases to 
make it harder to discover a solution with the 
opposite occurring if too few blocks are found. 
Adjustments are banded at 1/3rd of and 3x the 
target block time with no individual block 
adjustment greater than 0.4%. Because storage 
contracts run for significant lengths of time, there is 
little value to faster block times. Block sizes are 
currently adequate for the amount of transaction 
volume, but solutions for scaling will need to be 

found in later years when the blockchain has 
experienced growth.  

 

2.1.2 Transactions 
Outputs represent an amount of coins with an 
identifier derived from transactions where output i 
in transaction t is defined as:  H(t||“output”||i). H is 
a cryptographic hashing function and “output” is a 
string literal. Every input must come from a prior 
output, so an input is simply an output ID. Inputs and 
outputs are also paired with a set of spend 
conditions. Inputs contain the spend conditions 
themselves, while outputs contain their Merkle root 
hash9. 

Spend conditions must be met to unlock coins from a 
contract and include a time lock, a set of public keys 
and the number of signatures required. An output 
cannot be spent until the time lock has expired and 
enough of the specified keys have added their 
signature. 

The spend conditions are hashed into a Merkle tree, 
using the time lock, the number of signatures 
required, and the public keys as leaves. The root 
hash of this tree is used as the address to which the 
coins are sent. In order to spend the coins, the spend 
conditions corresponding to the address hash must 
be provided. The use of a Merkle tree allows parties 
to selectively reveal information in the spend 
conditions. For example, the time lock can be 
revealed without revealing the number of public 
keys or the number of signatures required.  

Cryptographic signatures are required for each 
transaction and paired with an input ID, a time lock, 
and a set of flags indicating which parts of the 
transaction have been signed. The input ID indicates 
which input the signature is being applied to. The 
time lock specifies when the signature becomes valid 

 

 

 
9 Champine, Luke. & Vorick, David. (2014) Sia: Simple 
Decentralized Storage 
https://sia.tech/sia.pdf 
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2.1.3 Contracts 
Contracts specify the length of time an object 
dataset is to be stored, likely defaulting to 30 days to 
coincide with customer billing cycles and also specify 
cost information not directly exposed to storage 
customers but used as a key input to formulate 
prices end-customers pay, including baseline storage 
and bandwidth costs. Contract formation fees 
charged to the client are slated for removal as an 
extraneous process with providers covering 
transaction fees as a cost of business. Storage proof 
provisioning and scheduling is also included in the 
contract. 

Upon setup, the client software polls the network to 
get a list of all available providers. Based on desired 
attributes and requirements as set in the client, a 
group of storage providers are chosen for contract 
formation with more contracts created than are 
ultimately used to cover provider churn and 
availability. At present, contracts are limited to 
single instance use. A major feature of the SCP 
software is allowing multiple entities to access 
contract sets from multiple machines, key to a real 
public cloud storage competitor. 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.4 Storage Proofs 
Storage proofs prevent a provider from faking or 
deduplicating data to store something less than the 
original agreement calls for. Providers submit proofs 
within an agreed upon window. Valid proofs result in 
a partial payment from the contract to the provider 
up to the contract resolution or renewal. If a valid 
proof is not provided, payment is instead sent to a 
burn address. After a specified number of missed 
proofs, contracts are invalidated, and the segment is 
added to a calculation for repair. 

Storage proofs do not have inputs or outputs; only a 
contract ID and proof data consisting of a segment of 
the original file and a list of hashes from the file’s 
Merkle tree. Upon submission to the blockchain, 
proofs become publicly auditable. Storage proofs 
use a randomly selected segment and a random 
seed for challenge window Wi is given by:  
H(contract ID||H(Bi−1)) where Bi−1 is the block 
immediately prior to the beginning of Wi.  
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2.2 Relayer 
 

2.2.1 Distributed Renter 
The key SCP innovation is an abstraction called 
Relayer that provides distributed client functionality. 
An application instance (or cluster of instances), the 
Relayer may reside internally at a customer site or 
run as an EC2 instance on AWS. Public Relayer 
instances may be considered in the future but are 
not currently in the roadmap. The Relayer provides 
metadata efficiency using a database architecture 
for key pair and Posix attribute information. 
Metadata is indexed for searchability and easy 
recoverability with the database itself uploaded to 
the network for additional durability/redundancy 
[metadata database]. Additional features are 
included in Appendix A. 

A distributed client allows multiple seats in an 
organization to access the same object datasets 
using a common set of contracts, key functionality to 
provide true file and object sharing, permissioning 
and other standard cloud storage features not 
currently possible in other decentralized storage 
projects.  

In an example organizational setting, the HR 
department creates a bucket and uploads a project 
spreadsheet which the engineering department 
modifies. They might then attach new CAD drawings 
into the same bucket on the same contract set. 
Access control lists or other permissioning 
capabilities allow or deny read/modify/delete 
capability for objects and buckets, both inside and 
outside of the organization. The architecture also 
enables features like lifecycle rules and advanced 
versioning.  

The Relayer changes everything. 

 

2.2.2 Wallet/Exchange 
Distributed cloud storage has discernable benefit 
over traditional replicated clouds though inclusion of 
a native crypto currency is likely to create friction in 
adoption. Acquisition and custodianship of digital 
assets in a rapidly evolving space represents a new 
layer of risk for business. At the same time, there are 

a myriad of horror stories from companies involved 
in crypto-assets and people losing money to hackers 
and fraudsters. Though the Relayer and storage 
provider network operates on a native crypto coin, 
companies are not exposed to it in normal 
operation. Administrators have the ability to monitor 
coin transactions and wallet operations but have no 
custody responsibility or requirement to procure an 
ongoing coin budget. On the SCP network, the utility 
coin is a frictionless currency allowing providers to 
get paid for provisioning storage. 

Customer purchase and payment processes are 
similar to traditional cloud storage providers (credit 
card, purchase order thru a web-based interface, 
etc). After receipt of payment, the software is 
authorized to purchase coins directly via API which 
are then locked into the contract set. As of this 
whitepaper, three exchanges are live with more 
expected throughout 2020. When more storage is 
required and contract renewals occur, additional 
coins are procured automatically at market prices. 
There is no excess of coins exposed in wallets. A 
multisignature wallet prevents customers from 
accessing Relayer features beyond what has been 
paid for and authorized by the application10. 

 

2.2.3 Erasure Codes 
Redundancy and durability refer to thresholds 
before stored data is lost, damaged or unavailable. 
The most common redundancy schema is replication 
across multiple instances and ideally over a diverse 
geographic area. RAID configurations replicate 
datasets across drives in a single server, while 
multiple server installations may replicate data 
within a facility, but an event limiting access to the 
datacenter removes access to all copies. Expanding 
copies to other facilities is good but impacts cost and 
performance with at least two full copies required 
and increased bandwidth to upload and access 
them. For acceptable redundancy, replication must 
scale to 8x or higher and usually requiring copies 
over a wide geographical footprint.  

 
10 Multisignature 
https://en.bitcoin.it/wiki/Multisignature 
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Erasure codes provide higher durability with 
significant cost reduction through a mathematical 
process of data segmentation that includes copies of 
segments called parity pieces. The encoded 
segments are sent to separate storage locations with 
only a subset of pieces required to rebuild/download 
the entire dataset. Reed-Solomon codes use 
polynomial interpolation to create a scenario where 
n is the minimum number of pieces for a complete 
download, k is the number added parity pieces and 
m is the total number of pieces or erasure shares.  

For example, splitting data into 2 pieces and adding 
2 parity pieces create 4 pieces, which we can 
distribute to 4 separate locations. Of the 4, any two 
are able to provide a complete download and any 
two can fail with the data still fully available. In this 
scenario, the data is expanded 2x or the same as a 
single replication yet now two locations failing do 
not result in data loss. Increasing the number of 
pieces increases durability without impacting data 
expansion. Standard cloud companies with a small 
number of large facilities are limited in the number 
of pieces they can distribute and are forced to cover 
a large geographical area. They may use codes to 
limit replication across servers to mitigate risk of 
individual hardware failure, but usually within a 
single datacenter.  

Contrast with a network of thousands of hosts 
scattered throughout a customer region. Large code 
sets created locally with additional distant providers 
to protect against regional catastrophe create 
durability of 11 nines (99.999999999%) without 
extreme cost increase. SCP is coded to 10/30 where 
30 pieces are uploaded and any 10 can provide full 
retrieval while the Relayer lets the customer decide 
on a variety of capabilities with code factor 
modification occurring automatically under the 
hood. 

Replication has benefit for the small and individual 
file object repair and replace where erasure codes 
require an entire segment piece be modified and re-
uploaded. Possible methods to address include 
smaller piece size, caching at the Relayer and 
possibly using replication for small files. 

 

2.2.4 Durability Factors 
Erasure codes create feature and performance 
flexibility using a dynamic contract set configuration 
in the Relayer client. Currently, a single client 
accesses a static set of contracts. A distributed 
contractor allows multiple client seats access to 
groups of contract sets, each specifying separate 
cost, performance, durability factors, access 
permissions and lifecyle rules. Some of these sets 
can have static properties with others dynamically 
changing across renewals. Some example use-cases 
follow. 

Content Distribution Networks 
Data produced and consumed at a single location 
may perform well with a localized aggregation of 
providers while a frequently accessed website with 
global traffic requires a larger contract set and 
provider sub-groupings located strategically to 
accommodate traffic surges. An erasure code factor 
with regional provider sub-groups strategically 
located looks a lot like an ad-hoc content 
distribution network (CDN) with costs far lower than 
traditional replication to the network edge.  

Dynamic Durability 
Different types of data with varied access profiles 
can also benefit. New and regularly produced data is 
often accessed heavily when first available then 
tapering over time with a long tail before reaching 
archival status. Higher code factors initially make 
more copies accessible over more providers ensuring 
low latency and high availability. As data ages, the 
number of providers in a contract set decay 
gracefully until a lifecycle rule (eg 90 days) specifies 
archival status with customer pricing changing along 
with the rules. In a traditional cloud company, the 
final step could incur additional egress fees while the 
last group of SCP providers do simple contract 
renewals. 

Latency/Performance 
Code factors impact latency and download 
performance. The core protocol envisions 
parallelism, but performance is not strong in 
practice. Latency and download performance may 
be enhanced through worker prioritization when file 
objects are requested. Using a 10/90 code factor as 
an example, any 10 pieces can create a full 
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download. Tasking all 90 for the initial download, the 
fastest arriving pieces conclude with the rest 
discarded. Instead of grading providers with a score, 
the protocol should work through network 
congestion or provider saturation with no priority 
given to which provider ultimately sends the piece. 
There is higher cost to additional providers and 
higher bandwidth use with more discarded traffic. 
Customers pay premium price for a tier of storage 
providing ultra-fast downloads and the lowest 
latency. 

 

2.2.5 Custom Contract Sets  
With the ability for multi-access contract sets and a 
network of varied providers, features are possible 
from custom contract sets based on desired provider 
qualities. An example is performance tiering where a 
target group of providers with fast downloads are 
included. The Relayer provides robust ability to find 
and select provider groups. 

Compliance 
Regulatory regimes are numerous and exist for a 
variety of reasons. Storage providers have the option 
to meet base compatibility for as many compliance 
categories as customers require. As the network 
provider, SCP facilitates inclusion and audit 
processes to ensure provider sets follow a specific 
regime. A global set of providers can be drilled down 
to a custom contract set for individual compliance 
regimes.   

Hyrbrid and Multi-cloud Networks 
Some traditional cloud services provide hybrid cloud 
capability; publicly staged data meshed with onsite 
storage installations. Reasons for keeping data 
internal include securing the company’s most 
sensitive assets, compliance with regulation and 
keeping the most often accessed information closest 
to producers and consumers.  

The Relayer can group full erasure coded copies 
inside the firewall and across corporate providers, 
including provider software on normal desktop 
clients. For large enterprises, it is possible to 
configure enough hosts internally on desktop 
equipment and potentially negating large storage 

server arrays. The benefits are higher durability and 
lower cost. 

Most companies will prefer to continue using 
storage servers already configured. For these, the 
Relayer may communicate and use simple 
replication on internal data while seamlessly 
providing bucket and domain interfacing alongside 
external data. At minimum, with full S3 compatibility 
as outlined in the next section, companies can use 
one of many established management tools to 
combine internal data with SCP hosted data. 

 

2.2.6 AWS S3 compatibility 
Amazon's S3 object storage is a de facto standard in 
cloud storage. With hundreds of 3rd party 
applications and enterprise adoption/acceptance, S3 
compatibility on distributed networks is a 
requirement. Applications should gracefully 
transition to the SCP network with as little as a URL 
change. At minimum, a user must be able to choose 
an arbitrary key, presented as a path to map data 
pieces to specific hosts including object hierarchies. 
Buckets are collections of objects included in these 
hierarchies with individual objects inside of a given 
Bucket also having a unique ID and path11.  

The base API must include the following for file 
object operations:  

• Put - store in a given pathname 
• Get - retrieve any given pathname 
• List - listing of paths 
• Delete - remove any given path. 

as well as Bucket operations: 

• Create 
• Delete 
• List 

  

 
11 (2019) Amazon S3 REST API Introduction 
https://docs.aws.amazon.com/AmazonS3/latest/API
/Welcome.html 
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2.3 Technical Proposals 
The following are design proposals describing core 
architecture making up Relayer and provider 
functionality. This is the core innovation of the 
project and the foundation that allows for a true 
distributed cloud storage set of products.  

 

2.3.1 Prepaid downloads  
Creates a download budget within the confines of 
the initial contract parameters, including partial and 
full object downloads. When coupled with key-value 
addressing and Posix metadata identifying objects as 
“public” permissioned, this opens public file and 
object access for websites and other shared access. 
To facilitate this module, we add two Remote 
Procedure Calls (RPC) to the Relayer server.  

1. TopUpToken(token [32]byte, 
resources) - creates/adds resources to 
the token specified in the argument. Funds 
are provided in a new contract revision with 
the Relayer client calling the RPC and paying 
the provider via the token for the budget 
allocation. Resources are of two types: 
number of bytes to download and number 
of sectors that need to be accessed. Both 
are used to calculate total cost of a 
download and upon using the token, 
available resources (number of sectors and 
bytes used by download) are decreased on 
the provider. 
 

2. DownloadWithToken(token 
[32]byte, sector, offset, 
length) - clients download data internally 
or publicly shared links with resources 
drawn down from the token. Does not 
create new a contract revision. 

Benefits 

Multiple entities may download data objects from a 
contract simultaneously instead of each contract 
being associated with a single user or instance. Using 
tokens, one machine calls TopUpToken and then 
all instances call DownloadWithToken using the 
token. Most important, users do not require a full 
blockchain installation or access to the contract to 
use the token 

• Users upload data, create link, encode 
server names, tokens and initial sector ID 
(the sector will store the list of sector IDs 
with actual data), and give that link to 
another user with simple addressing. 

• Exposing the DownloadWithToken RPC 
via websocket, all data on the contract is 
available to Web applications running in 
browser with users able to download 
directly from the host network.  A budget 
can be specified allowing for 
websites/applications to “pay” the host 
network using TopUpToken RPC with a 
small bit of Javascript embedded in the site 
pages calling DownloadWithToken RPC 
via websocket to download the data.  

  

  



14 | P a g e  
 

2.3.2 Deferred Contract Updates 
In the current base implementation, object 
uploading or modification in a distributed 
environment is limited to a single entity/action with 
contracts entering locked status as information is 
added or revised. Examples are changing allowance, 
prices, uploading, etc. Multiple concurrent object 
actions from diverse sources is not possible. The 
client(s) must wait for an action to conclude and the 
contract to be unlocked before proceeding. To allow 
for a distributed client, a deferred update 
architecture is introduced for contract modification. 

As with Prepaid Downloads, the token is used and 
topped up as needed. A temporary key-value is 
introduced on the provider, outside of the contract. 
The Relayer references key-value pairs using a key 
from a new CopyFrom RPC. The renter module has 
full create, read, update and delete functionality 
(CRUD) of keys on host storage where there is an 
active and valid contract. Clients accessing the 
contracts/providers upload data until the token is 
depleted. A database structure (LevelDB) on the 
provider holds uploaded data key-pairs.  
 

Description 
Storage in the key-value store is charged based on 
amount used and time stored. The renter module 
performs a token “top-up” in putting a specified 
number of bytes/second on a new token. This 
budget is specified automatically in the Relayer 
configuration. Clients accessing the contract for 
object operations on the key-value store call the 
token. Storage providers track the remaining budget 
on the token, removing associated key-values when 
it reaches zero. Reading from the key-value store 
requires the token for prepaid downloads and is 
charged in the same way (downloaded X bytes => 
decrease token balance by X). The same model is 
used for listing keys and the unit of value is "byte" 
with pricing based on individual host prices. Token 
balance is decreased when a record is created or 
updated. 

Each key in the key-value store is owned by the 
token and only this token is allowed to remove or 
update the record while any token can read it if it 

knows the key. 
 

Implementation 

Storage Provider 

The provider uses a local key-value store (e.g. 
leveldb) to store key-value pairs. Each value must 
include the ID of a parent token. A map from the 
parent token lists all associated keys, total used 
storage in bytes, last update timestamp and balance 
at that time. Expiration can be derived from this 
information with an In-memory priority queue to 
trigger removal of keys when the expiration is 
reached. 

Client 

New object data is immediately uploaded into the 
key-value store on providers and initially held locally 
as a temporary backup. When enough data 
uploaded, a sector is created using CopyFrom and 
the data is removed from the key-value store and 
deleted from the local cache. 

Micro-sectors 

Tiny files are stored in one or multiple consecutive 
16kB micro-sectors aligned inside normal 4MB 
sectors. These objects are put into key-value stores 
until the total size of an individual micro-sector 
reaches 4MB and a new sector is created. 

High Throughput 

Temporary storage allows large data uploads and 
parallelism in contract access. Data is uploaded from 
multiple machines and/or multiple locations and put 
into key-value storage. Clients send keys of uploaded 
data to the coordinator machine (Relayer) which 
handles contract updates with CopyFrom calls 
(sending keys as sources of data) and removes the 
keys from the key-value store. 
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2.3.3 Metadata Database 
The foundation for a distributed client with multiple 
customers accessing the same contracts is to store 
object metadata in a database architecture. 
CockroachDB is chosen for SQL architecture with 
Pebble used for key-values. The database instance 
store complex hierarchies like S3 buckets, objects, 
filesystems and blocks. 

Design 

Relayer server instances run the following 
components (as code modules within a single binary, 
or as separate microservices): 

• Contractor/Coordinator 
• CockroachDB instance  

o Pebble key-value storage 
o File operations handler for Pebble 

• Daemon with common list of contracts.  
o Lock service 

• S3-compatible overlay 

Components interact with multiple machine 
instances and platforms (completely scalable, any-
to-any) with clients on mobile or web applications 
with standard authentication capability. Data 
originates with clients and is sent to the Relayer as a 
user request, which may include S3 objects, files or 
file operations (FUSE). Reed-Solomon erasure coding 
is applied to the data based on a redundancy factor 
chosen by the client [EC] and the resulting data 
shards are encrypted [encryption]. The Coordinator 
gets corresponding contracts and sectors for data 
and uploads to the storage provider network.  

Keypair metadata is formed and combined with user 
specified metadata such as user permissions. Keypair 
metadata contains sector IDs, storage provider and 
encryption information. It is everything required to 
recover where a chunk of data is stored and how to 
read it back from the network of providers.  

Metadata components may be calculated before 
data is uploaded to the provider network but 
becomes valid only after it is uploaded (sector IDs do 
not yet exist on the providers). In the case of FUSE 
object modifications, if a part of a file is changed, the 
metadata needs to be merged with existing 

metadata of the unmodified parts of the file. 
Otherwise this metadata itself is new full record.  

Metadata is saved to a CockroachDB SQL database 
instance built on top of a single key-value stores. 
CockroachDB is paired with Pebble (a LevelDB-
inspired key-value store) with CockroachDB 
performing high-level SQL logic and transforming the 
information into a form Pebble can deal with. Pebble 
provides custom file handlers to implement the 
underlying file storage interface.  

File handlers are a separate module which convert 
file operations requested by Pebble into a remote 
procedure call (RPC) to the storage network 
providers through the daemon (to upload or 
retrieve). File handlers also have a local file cache, to 
return frequently requested files quickly from local 
disk storage attached to the Relayer instead of 
retrieving from the storage network. This approach 
optimizes traffic and reduces latency. The Relayer 
includes caching for data to return frequent files 
from the disk.  

A list of contracts must be common for all Relayer 
instances (in the case of a cluster), to ensure each 
contract is only used for writing by one process at a 
time. A Lock Service is used to prevent conflicting 
contract modification. Operations requiring specific 
contracts (pebble handler) must wait on the Lock 
Service similar to a mutual exclusion object (mutex).  
 

Contract layout 

Contracts reference two types of sectors: DB and 
File. DB sectors are divided into three categories: 

• Special first sector 
The first sector stores a list of all DB sectors 
(like MANIFEST file in databases). It also 
stores any tiny files produced by the DB and 
the data to inherit encryption keys from 
(see encryption section below). 
 

• SSTable sectors 
These are unchangeable sectors 
representing database's SSTables (one 
sector for one SSTable). Sectors are 4MB 
size. They are created when the DB log file 
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is sorted or when several sstables are 
merged. Their size is fixed. 
 

• Sectors for append-only file (DB's LOG file) 
A log file (*.log) stores a sequence of recent 
updates in binary form. Each update is 
appended to the current log file. When the 
log file reaches a pre-determined size 
(approximately 4MB by default), it is 
converted to a sorted table and a new log 
file is created for future updates. These 
sectors are used to store the LOG file. The 
core protocol allows sector modification, 
including partial which allows the Relayer to 
implement object append operations. 
 

Encryption of DB sectors 

A stream cipher approach is used to encrypt 
database sectors, using the key and utility data 
(Nonce) from the first sector. The first sector stores a 
set of nonces with each corresponding to one 
SSTable sector. The encryption key provided by the 
user and nonce is used to generate a 4MB-long key 
to encrypt an individual SSTable sector. This key is 
XOR'ed with the actual data to encrypt a sector. 
Nonces are simple sequential numbers, increasing 
each time the encryption happens in order to get 
new keys. A similar method is used to encrypt the 
first sector and special append-only sector. 

Bootstrap 

When the Relayer is first bootstrapped, a random 
seed is generated to create a new wallet and a new 
database instance without establishing contracts 
with the host network. The Contractor forms 
contracts from the storage provider database as 
based on administration decisions, excluding 
contracts already used by other Cockroach instances 
(from SQL tables). The contracts are saved to a table 
and the Relayer writes the ID of its Cockroach 
instance to the first sector of each contract and 
writes local database sectors to the hosts. The 
contract is then reserved for the given Cockroach 
instance globally. 

Recovery 

The Relayer is intended to keep a small amount of 
local data, primarily tiny objects and some 
frequently accessed items. Tiny files can be in-lined 
inside the database with frequently accessed objects 
cached. Recovering the Relayer instance includes the 
database, contracts and all key-value stores using 
the master password created when the Relayer is 
first instantiated. When a full recovery is initiated, 
the process locates contracts by querying the 
network and downloading all database IDs from the 
host network and repopulating the local database.  
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2.3.4 New RPCs 
Erasure shares distributed over a large provider set 
create an issue for small object handling. In the 
present implementation, data shards are large 
enough (4MB) to allow strong durability without a 
large contract set. With files less than 4MB in size 
(eg jpg images), client software requires a method to 
identify the individual hash of a given shard and then 
a way to access specific sectors within the shard. 
Typically, the solution is to return the entire shard 
and incurring bandwidth and new charges if the file 
is modified and re-uploaded (saved).  

New Remote Procedure Calls (RPC) mitigate this 
issue. 4MB sectors on storage providers are divided 
into 256 “micro-sectors”, each equal to 16KB. Small 
files may occupy from 1 to the 255 of these special 
sectors and allow for the creation of addressing to 
locate and access any given file object. This 
functionality creates an issue when some number of 
micro-sectors are released due to file object deletion 
or revision. A new process for sector 
defragmentation is required to reuse this space 
efficiently and do correct accounting on the host 
nodes. 

One method is to wait for a new file object small 
enough to fit into the vacated space. A better 
solution is to set up a condition when the number of 
free micro-sectors is more than 50% of a full sector, 
defragment by waiting for two 50%-free sectors and 
copying the data to a new sector. The new RPCs to 
accommodate are as follows: 

• HashMicrosectors([]struct{Sec
torID, microsectorSize int}) 
([]struct{[]hashMicrosectors}
) 

The RPC verifies individual micro-sectors while 
microsectorSize specifies a fixed micro-sector 
size without hardcoding a 16kB size. It takes a slice 
of the sector’s ID along with the micro-sector size 
then returns a slice of slices of the micro-sector 
hashes. microsectorSize is a power of 2 from 
64 (crypto.SegmentSize) to 4M 
(modules.SectorSize). Returned hashes from 
the micro-sectors are the same hashes from a 

Merkle Tree that are on the level of given micro-
sector size in the tree. 

• CopyFrom(*ModWriteRequest) 
(LoopWriteResponse) 

*ModWriteRequest = WriteRequest, with 
different Action struct. Our Action is the same 
except with Update/Append. Instead of data only, 
it's either data or LoopReadRequestSection, or key 
with (offset, length combination) in our key-value for 
Deferred Contract Updates. If CopyFrom receives a 
request to return the hashes of one or more micro-
sectors, it returns them before reading signature 
from renter. CopyFrom is used to copy sectors 
without having to download/reupload them. 

Golang describing new RPC configuration: 
https://play.golang.org/p/u1fYMyd2Ran 

 

  

https://play.golang.org/p/u1fYMyd2Ran
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2.4 Network Development 
 

2.4.1 Incentives 
In a distributed sharing economy network, 
independent actors are marshalled to provide 
resources in exchange for financial incentives. They 
deploy assets already in service or bring new 
equipment online if earnings suggest profitability. 
Baseline prices are established via market 
mechanism that allow providers to set the price of 
storage arbitrarily with competition for contracts 
guaranteeing an aggressive floor. Centralized cloud 
providers enjoy large gross margins, distributed 
networks drive prices closer to actual cost. Or, as an 
individual once quipped: 

"Your fat margin is my opportunity"  

 Jeff Bezos 

Incentives align goals of providers, customers and 
the network operator while improving price 
discovery, performance and capacity. Incentives are 
decentralizing as providers are never required to 
accept the additional funds and decide individually 
what they are willing to do to meet financial goals. 
Networks without strong incentives beyond 
standard storage payments are destined to fail. 

Increased rewards begin on adherence to project 
guidelines. The first of these binds storage pricing to 
a range in the face of potentially rapid and 
significant changes in underlying crypto-asset prices. 
This will be quickly ingested into the SCP protocol 
with hosts able to set auto-pricing in line with 
project recommendations directly in the provider 
software. As the program evolves, provider analytics 
will allow the project to incentivize virtually every 
aspect of the provider profile and incorporate 
incentives directly into the provider software where 
possible. 

Incentive tiering also envisions provider self-
identification (equipment inventory and personnel), 
performance stratification, capacity and geographic 
need as rewardable behavior. Network inventory, 
mapping and performance monitoring capability at 
SCP headquarters will lead providers to more 
lucrative contracts and guide them on how to 

capture maximum reward. Compliance regimes such 
as HIPAA could require custom firewalling or 
certifications beyond normal provisioning.  

The initial reward structure encourages provider to 
dedicate capacity and adhere to a pricing floor with 
a low coin price based on the emission schedule and 
market conditions. The metrics used in preliminary 
calculations include: 

a) Adherence to guideline schedule – Floor 
pricing, collateral multiple and minimum 
amount of capacity 

b) capacity up to a 20TB ceiling – meant to 
combat thin provisioning for unfair 
incentive draws 

c) amount stored – can be gamed through the 
API and requires tuning 

Incentives are drawn from a pool established at 
genesis. Funding not ultimately driven into contract 
formation will evolve to a revenue-sharing 
percentage drawn from customer billings. Provider 
profitability is critical to project success and 
incentives will always be a component of provider 
acquisition and curation. 

With multiple decentralized storage projects in 
development and on the horizon, intense 
competition for available storage makes provider 
capture and retention dependent on profitability. 
Projects/products unable to provide lucrative 
returns may never achieve network effects required 
to compete on a serious level. At minimum, less 
competitive networks will incur higher churn rates as 
providers seek the highest yield on storage assets. 

 

2.4.2 Churn/Object Repair 
Networks experience data loss due to component 
failure, misconfiguration and abandonment. Cost of 
remediation is measured in equipment replacement, 
personnel cost, downtime opportunity cost and 
bandwidth required to restore lost durability. 
Replication strategies may require entire datasets 
uploaded to new media, either another server in the 
same facility (minimal bandwidth cost) or in another 
datacenter (higher bandwidth cost). Centralized 
providers tend to be well-prepared for unplanned 



19 | P a g e  
 

equipment failure and outages, maintaining spares 
and proactive equipment swap-outs though it is 
difficult to be prepared for a major facility or region 
outage. 

Distributed P2P networks experience unplanned 
outages at a higher frequency with the same 
potential challenges and also losses from providers 
exercising freedom to put assets to use in some 
other capacity. This unplanned provider loss is 
referred to as "churn" with the protocol specifying a 
lost data threshold before a repair operation is 
called. Because uploaded data is segmented, 
encoded and then encrypted, data copy from a 
nearest neighbor is not easily accomplished. It would 
also require trust that providers not collude to 
deduplicate data. Because of this, repairs on the 
distributed network are expensive operations, 
requiring full copies of data at the source client for 
re-encode and re-encryption before re-uploading to 
new providers.  

Configurable durability is again the most viable 
solution with the baseline code factor set to ensure 
desired durability AND then padding to cover 
expected churn rates. As the network grows, it will 
be possible to set baseline durability just ahead of 
measured repair rates so that data seldom gets 
called for expensive repairs. The cost increase with 
higher durability should nearly always be less than 
the cost to repair for most data storage profiles. 
Even so, over longer periods of time contract sets 
will deteriorate, and data will need to be repaired to 
new providers. The Relayer should track these 
potential repair segments and warn data owners in 
advance so that costs can be mitigated. 

 

2.4.3 Block and Network Metrics 
Key to a robust network is metrics on as many 
surfaces as possible. For standard block exploration, 
the project contemplates a full re-write of the 
current explorer. Before that is possible, a transition 
to stateless modules is required first to ensure 
accurate block and transaction reporting of contract 
information.  

Network exploration is a larger segment and SCP will 
devote significant resources to ongoing data 

collection and presentation for customers and 
providers. Again, providers willing to include small 
inventory analysis payloads in provider software will 
earn the most incentives with more granular and 
precise inputs to the system. Customer IT teams 
require complete network maps and profile 
information to help build provider groups able to the 
meet specific needs. 

 

2.4.4 Provider and Network 
Development 

Network development and growth is a project 
priority. No truly decentralized P2P cloud storage 
network suitable for enterprise storage exists as of 
this writing. Valuable insight can be drawn from file 
sharing technologies like Napster, Gnutella and 
Bittorrent but key assumptions may prove 
inadequate over time and at scale. Providers around 
the globe face a variety of conditions that could 
make the product more or less viable including 
standard ISP capabilities, operational expenses and 
geopolitical concerns. In mainland China, ISPs are 
legally held responsible for activity on the network, a 
major challenge to decentralized storage projects 
where privacy is built-in and network contents are 
not easily identifiable. 

Provider Software 
The current provider software is immature and 
requires ongoing tweaking and monitoring by 
providers for consistent performance. Future 
versions will make use of containers extensively for a 
more consistent installation experience and lowered 
support burden. The software should allow for 
control of multiple provider installations assuming 
one per machine. And provider software requires 
better accounting capability to determine 
profitability and for tax reporting.  

Hardware Development 
A separate arm of the project is working on 
lightweight provider client hardware initially 
powered by already available single board 
computing (SBC) devices. These "appliances" will 
function with simple web-based interface and 
limited ability to alter configuration parameters. 
These may be offered to the public on an affiliate 
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model and preconfigured with automatic pricing 
built in. The provider can choose between a crypto-
asset reward or durable storage on the network. 
Beyond simple appliances, the hardware division 
should evolve to larger configurations starting with 
NAS devices and perhaps partnering with a larger 
vendor for rack-based units.  

 

2.4.5 Latency / Bandwidth 
Constraints 

A wide spectrum of provider performance is forecast 
for the network at scale with an unusually large 
percentage of home-based installations and weak 
connectivity. Consumer-grade ISP plans often 
provide asymmetric connections, limiting upload 
performance which translates to customer 
downloads. Limits on the amount of data transferred 
(caps) are also common leading to higher costs or 
periodic unavailability for individual providers. 
Finally, this group of provider are often less diligent 
in node upkeep, preferring a "set it and forget it" 
process. The benefit is lower cost storage with these 
"hobby hosts" making up a significant portion of 
competitive costing advantages over centralized 
services.  

Though latency to any given provider is directly tied 
to customer location, the distribution of latencies 
over contract sets should converge in allowing 
customers to delegate levels of responsibility based 
on desired performance characteristics and available 
budget. A core service provided by the project is 
network analytics, segmentation, incentivizing 
providers and creating actionable intelligence that 
can be fed into the Relayer configuration. 
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2.5 Appendix A 
Functional Requirements 
 

2.5.1 Relayer 
Overview 
– Browser or app-based interface 
– REST API for custom interface – customers and 3rd 
party applications 
– Storage tiers; static and dynamic 
– User authorization/authentication 
– Logging, reporting capability 
– Public performance/availability data replication 

 
Installation 
– Cross-platform compatibility 
– Container orchestration – customer one touch 
installation 

 
Storage Network Interaction 
– Real-time network mapping, identification and 
monitoring across sia-based networks 
– Ongoing QoS audit of all storage nodes 
– Network reporting over specified periods 
– Ad-hoc storage node groupings for classes 
– Contract creation/renewals with Sia-based 
network hosts 
– Automatically form new contracts upon 
completion as required 
– Upload/Download/Replace files on storage nodes 
– Automatic instance backup of customer metadata 
and upload to network 
– Ongoing analytics (csv creation) for class analysis 
and lifecycle determination 
– Ongoing file audits 
– Repair operations on failed shard audits 
– Node whitelist/blacklist 
– Requires no customer access to crypto coin 
transactions 
 

Database 
– Store netmap results for a defined period 
– Store individual customer metadata, user info, 
credentials 
– Store bucket metadata 
– Cache frequently accessed files (if 

necessary/possible, needs evaluation) 
– Incremental backups are uploaded to the most 
durable node tier for replication 

 
Buckets/Objects 
– Key functionality = Create, Delete, List. Every 
bucket has a unique name/id 
– Top level namespace addressing 
/domain/bucketname 
– Bucket properties include owner, date created, 
date edited 
– Allow customer to add, delete, copy, replace, 
download objects (files) 
– User permissions (upload, delete, replace, 
download, view) 
– File Versioning at bucket or object level 
– CORS configuration (XML file) for all buckets 
– “tags” on buckets and/or objects 
– Lifecycle rules at bucket or object level to move 
from one node tier level to another 

 
Exchange 
– Customer ID account creation (if allowing 1 to 1 
relationships) 
– Interact with other Relayer exchange clients 
– Interact with centralized Exchange APIs 
– Atomic swaps of sia-based currencies 
– Automatic wallet top ups based on use 
patters/predicted storage use 
– Wallet creation for Relayer customer on all sia-
based networks 
– Provide transaction reporting, logging and balance 
information 
– Requester pays 
 

2.5.2 Client 
– Provide interface for bucket and file management 
– Allow bucket create, rename, delete 
– Allow upload, delete, replace, download, view 
capabilities 
– Allow permissions settings per file or per bucket 
– Allow Lifecycle settings per file or per bucket 
– Provide accounting features 
– Provide basic network monitoring features 
– Use SAML for a Single Sign-on capability 
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– 2 Factor authentication 
 

2.5.3 Network 
– Host container software installs 
– Best practices guidelines 

– Storage node incentive program (storage used, 
capacity offered) 
– Node/network performance dashboards 
– Minimum configuration/Recommended 
configuration 
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