|
www.platon.network EI

PlatON
PlatON: A High-Efficiency
Trustless Computing Network
V0.6.6
November 28, 2018
>

<&

=
>

/

A

D

=

®
<5 @
>

“ Hence the world is not only the most admirable machine,but
also insofar as it consists of minds it is the best common-
wealth,through which there is conferred on minds as much
happiness or joy as possible,and it is in this that their physi-

cal perfection consists.”

Gottfried Wilhelm Leibniz
-“0On the Ultimate Origination of Things”

Summary

The scalability issue of blockchain is intrinsic to the consensus algo-
rithm that it relies on to validate transaction or computation in a trust-
less way. The more nodes participate in replicating a single computa-
tion, the more confidence is bestowed on the correctness of the results.
However, the time to consensus and resources committed on the work
increase drastically with the number of nodes prohibiting blockchain
being adopted in a large scale. The flipside is consensus is not the
essence of blockchain’s appeal but the trustless feature which can be
attained cryptographically.

Verifiable computation (VC) is originally a scheme enabling a client
or verifier to verify the correctness of the results computed by an un-
trusted cloud provider. The computing party is responsible to conjure a
cryptographic proof for the verifier to easily evaluate the correctness of
the output. Compared to consensus algorithm, VC, in theory, guaran-
tees correctness without replicated computation, tremendously reduces
the time and cost otherwise consumed in running thousands of nodes
and synchronizing them for block production. In most circumstances,
VC can potentially be the more efficient infrastructure for smart con-
tract execution and diminish the role of blockchain to a tamper-free
database for the storage and public access of proofs.

PlatON uses VC to achieve scalability, verifiability and privacy in
trustless computing. The proprietary technology developed by the team
in the past few years further reduces the overhead time and resources
for the prover by several magnitude turning it into a more practical
solution for general trustless computing. Moreover, as privacy is con-
cerned in many trustless computing cases, secure multi-party computa-
tion (MPC) and homomorphic encryption (HE) are employed to prevent
exposure throughout the entire lifetime of the data. The goal of Pla-
tON is to construct a full stack infrastructure for decentralized apps,
while individual module such as VC will be available to connect other

blockchains to PlatON for scalable and privacy-preserving computing.

Contents

Summary
Contents

1 Trustless Computing

1.1 Introduction to Trustless Computing
1.2 Trustless Computing Schemes
1.2.1 Consensus-based Strategy
1.2.1.1 The Verifier’'s Dilemma,

1.2.1.2 The Scalability Trilemma

1.2.1.3 Security and Privacy Dilemma

1.2.2 Off-Chain Strategy
1.2.2.1 Trusted Hardware

1.2.2.2 Interactive Game

1.2.2.3 Non-interactive Proof

1.2.2.4 Trustless Computing in PlatON

Strategic Position

Technical Solution
3.1 Computing
3.1.1 Verifiable Computing
3.1.2 Privacy-Preserving Computing
3.1.2.1 Secure Multi-Party Computation
3.1.2.2 Homomorphic Encryption
3.1.3 Parallel Computing
3.2 Circuits L

© © © w ®

10
10
11
11
11
12
13

15

CONTENTS 5

3.3 Computing Specific Hardware 29
34 BaseChain 29
3.4.1 Decoupling Computation from Consensus 29
3.4.2 Computing Channel 30
3.4.3 Multichain Architecture 30

4 Technical Architecture 31
4.1 PlatON Network Protocol 31
4.1.1 Network Protocol Stack 31
4.1.1.1 Link Layer 32

4.1.1.2 Forwarding and Connection Management 32

4.1.1.3 Topology Plug-in 32

4.1.1.4 Data Storage 33

4.1.1.5 Message Transport 33

4.1.1.6 Application Layer 33

4.1.2 Service Discovery 33
4.1.21 ReDiR Tree 34

4.1.2.2 Service Registration 35

4.1.2.3 Service Refresh 36

4.1.2.4 Service Lookup 36

4.1.3 Computing Service 36
4.1.3.1 Publication of Computing Service 36

4.1.3.2 Discovery of Computing Service 37

4.1.3.3 Distrubution of Computation Tasks . .. 37

4.1.3.4 Secure Multi-Party Computation Protocol 37

4.1.4 Blockchain Service 37
4.1.4.1 Adding Blockchain Nodes 38

4.1.4.2 Forwarding of Transaction 38

4.1.4.3 Block Synchronization 38

4.1.4.4 Proof of Verifiable Computation — Giskard 38

4.2 PlatON Network Structure 38
4.2.1 PlatON Nodes 39
4.2.1.1 Basic Services Nodes 39

4.2.1.2 Blockchain Nodes 40

4.2.2 Multi-Chain Routing Mechanism 40

4.3 Meta Computing Framework— Monad 41

CONTENTS 6

4.3.1 What is Monad 41
4.3.2 Participants oo 42
4.3.2.1 Computing Requester 42
4.3.2.2 Algorithm Provider 42
4.3.2.3 Data Provider 42
4.3.2.4 Computing Power Provider 42
4.3.2.5 Computing Collaborator 42
4.3.3 Computation Tasks 43
4.3.3.1 Data Source 43
4.3.3.2 Computation Classification 43
4.3.4 Computing Channels 43
4.3.5 Execution of Computation Tasks 44
4.3.5.1 Allocation of Computing Resources. . . . 44
4.3.5.2 Verifiable Proxy Computation. 44
4.3.5.3 Sole-Source Data Privacy-Preserving Com-

putation 45

4.3.5.4 Multi-Source Data Privacy-Preserving Proxy
Computation 46
4.3.6 Computing Specific Hardware 47
4.4 Proof of Verifiable Computation — Giskard 49
4.4.1 The Value of Computing Contribution 49
4.4.2 Proof of Verifiable Computation 49
4.5 Meta Smart Contract — Sophia 50
4.5.1 Types of Meta Smart Contract 51
4.5.1.1 Stateful Contract 51
4.5.1.2 Stateless Contract 51
4.5.1.3 Hybrid Contract 52
4.5.2 Virtual Machine of Meta Smart Contract 53
5 LAT 54
5.1 On-chain Digital LAT 54
5.2 Cross-Chain Transfer of LAT 55
6 Technology Roadmap 56
7 Community Evolution 58
7.1 Technology Evolution 58

CONTENTS

7.2 Organizational Evolution

7.3 Network Evolution
Glossary
References

Disclaimer

98
99

61

71

74

Chapter 1

Trustless Computing

1.1 Introduction to Trustless Computing

In the digitalized world, any individual can only get hold of a small
subset of the massive amount of data generated daily. It is impossi-
ble for any entity to stream the whole set of data valuable to them,
handicapping their full grasp of the landscape.

Every participant of the digitalized world is partially blind, blocked
in a certain angle towards the full picture. Collaborators thus have the
need to exchange data or engage in collaborative computation, in the
process of which value, information and asset are traded. Traditionally,
untrusted collaborators tend to use a “trusted third party” to collect
the data and verify its validity, e.g. outsourcing to the fast ascending
cloud computing service. However, trusting a third party inevitably
exposes users to potential issues with scalability and privacy.

The advancement in modern cryptography, especially fueled by the
recent rise of blockchain, proposed a new collaborative computing model,
many have called it “trustless computing”, meaning the integrity of the

computing results can be verified without reliance on a third party.

CHAPTER 1. TRUSTLESS COMPUTING 9

1.2 Trustless Computing Schemes

1.2.1 Consensus-based Strategy

A decade ago, Bitcoin, for the first time, made trust trivial between
parties involved in a transaction using cryptocurrency. Transactions
can be validated after decentralized nodes agreeing to a current state.
Ethereum inherited the consensus algorithm from Bitcoin and went be-
yond being a ledger by attesting to the computation of smart contract,
hence enabling trustless computing of an arbitrary program. However,
to assure correctness the computation must be replicated by all the
nodes, manifesting the intrinsic contradiction between efficiency and
trustlessness. Although Ethereum was called a world computer for large
scale trustless computing, it fails the mission due to poor scalability.
In addition, the lack of confidentiality also prohibiting blockchain to be
used to process private data and hinder the further growth of decen-
tralized applications.

Large-scale trustless computing is the foundation for decentralized
applications as cloud computing is to the millions of centralized ap-
plications. There are more than a hundred projects working on the
consensus layer, taking different sets of trade-offs, to develop a scalable
blockchain for decentralized applications to run fast and securely and
yet this direction is proven to be extremely complicated and challeng-
ing. In consensus-based schemes, there are three major common issues,

described below.

1.2.1.1 The Verifier’s Dilemma

Researchers from National University of Singapore mentioned a concept
of the Verifier's Dilemma [The Verifier’s Dilemma] in the paper
“Demystifying Incentives, in the Consensus Computer”. According to
this concept, complex computation task will break the integrity of the
network, facilitating malicious attacks.

The blockchain system rewards block producers who win the mining
contest, however providing no direct economic incentive to the other
miners that verify the transactions in the block. The issue may seem

trivial when majority of the transactions in the network are simple com-

CHAPTER 1. TRUSTLESS COMPUTING 10

putation tasks, requiring very limited computing power. As the trans-
actions become more demanding for computing power, such as complex
smart contract, the verifiers may spend large amount of resources but
end up getting no reward. Many verifiers are likely to skip the verifi-
cation step to save resources for the race to the mine the next block.
With less verifiers, the possibility of launching a successful attack on
the network goes up.

A typical attack resulted from Verifier’s dilemma could start with
a malicious actor broadcasting a series of complex computing intensive
transactions to the networks to exhaust the resource of other miners.
While rational miners compete to solve these puzzles, the bad actor

could gain an advantage in mining the next block by starting early.

1.2.1.2 The Scalability Trilemma

The Scalability Trilemma is a huge challenge for the blockchain scala-
bility [The Scalability Trilemma] which can be presented in the form
of a triangle, with scalability, decentralization and safety each occupy-
ing a leg. It is theoretically impossible to maximize the performance of
blockchain in all three dimensions at the same time. A certain system
must choose a set of trade-offs in pursuit of scalability.

Bitcoin and Ethereum are designed to achieve the most permission-
less participation of block producers for decentralization and safety,
however, at the cost of scalability. This fully decentralized scheme re-
quires every node to process every computation, limiting the through-
put of the network within the capacity of each single node. As the
number of nodes accrue when the network grows, the overhead time
required for consensus increases gradually, resulting a long latency to
finality.

1.2.1.3 Security and Privacy Dilemma

On-chain consensus scheme entails complete copies of ledger or state
stored on every full node and publicity of all transaction data, whereby
giving up protection of privacy. Transparency is important, but so is

privacy when it matters. As long as privacy is concerned, the users

CHAPTER 1. TRUSTLESS COMPUTING 11

would not release the data on the blockchain, putting a roadblock in

the utility of decentralized applications.

1.2.2 Off-Chain Strategy

To avoid the trade off in efficiency, people in the industry have increas-
ingly come to an agreement: the proper use of blockchain is for verifi-
cation only; the computing tasks must be separated from the consen-
sus layer and migrated off-chain, where a scalable, privacy-preserving
and verifiable computing infrastructure can be constructed to allow un-
trusted entities to engage in collaborative computation.

Currently a few projects are under development to realize off-chain
trustless computing, such as Oasis, Truebit, Stark, etc. Based on the

verification mechanism, there are three main strategies.

1.2.2.1 Trusted Hardware

Trusted hardwares, such as SGX/Intel, provides a trusted execution
environment (TEE), to host computing nodes. Computing nodes built
on TEE perform trustless computing over private data and attest to the
correctness of the results on chain. The TEE, however, used as another
trusted third party, establishes a trust boundary, inside of which code
and data are deciphered, substantiating a security threat.

In fact, SGX, the most widely used trusted hardware, has very se-
rious security flaws due to the very recently research results. As the
Foreshadow [Foreshadow], the recent state-of-the-art attack on intel
SGX, it says that “Foreshadow demonstrates how speculative execution
can be exploited for reading the contents of SGX-protected memory as
well as extracting the machine’s private attestation key”. What making
things worse is that “it only takes a single compromised SGX machine

to erode trust in the entire SGX ecosystem”.

1.2.2.2 Interactive Game

On-chain computation is expensive and restricted for complex programs
on Ethereum. Truebit suggested an interactive proof protocol to en-
force off-chain node perform the computation correctly. The solver,

who solve the computation task must play an interactive verification

CHAPTER 1. TRUSTLESS COMPUTING 12

game with the verifier, when challenged. The game narrows down to
the problematic step in the computation process through rounds of in-
teractions and eventually settles the disagreement on-chain with the
minimum amount of computing and expense. The dynamics between
solver and verifier add uncertainty to the Truebit system and the inter-

active mechanism implies long latency to finality.

1.2.2.3 Non-interactive Proof

In non-interactive verifiable computing, no interaction between the prover
and verifier is necessary, nor is there any constraint on the identity
of the verifier. The proof, once posted on chain, is public verifiable
by anyone remotely on their local machine. Verifiable computing was
originally studied to enable client to outsource the computation of a
function to untrusted entities with stronger computation capacity and
verify the correctness of the results with much less resource compared
to what is required for the native computation.

SNARK and STARK are the two most well-known implementations
of VC, both provide zero knowledge proof, preserving privacy of the
prover and reducing the proof size and verification time, thus practical
in certain applications. SNARK has very short proof and fast proof ver-
ification. However, it requires a complicated trusted setup procedure
which is the biggest obstacle in deployment. The major advancement of
STARK, over SNARK, is transparency, hence no initial setup is neces-
sary. Although STARK is a very impressive construction, the concrete
efficiency, such as proof generation time and proof length is not prac-
tical enough for real applications.

In a VC scheme based on SNARK or STARK, it requires a witness
in the proof generation, if that is anyone other than the data owner, the
private data is revealed. SNARK/STARK do not protect the privacy of
the client who outsource the computation to an untrusted third party,
although the privacy of the prover is guaranteed.

PlatON network, in contrast, deploys a high-efficiency VC algorithm
overlaid upon homomorphic encryption (HE) and secure multi-party
computation (MPC), provide a complete solution for trustless comput-

ing while maintaining privacy of the client’s data in the whole process.

CHAPTER 1. TRUSTLESS COMPUTING 13

1.2.2.4 Trustless Computing in PlatON

PlatON is a realization of a practical VC algorithm, that requires no
external setup, and compared to previous VC or Zero-Knowledge Proof
(ZKP) solutions, significantly shortens proof size and enables acceler-
ated proof generation and verification. In the workflow of PlatON, con-
fidentiality is accomplished using full homomorphic encryption (FHE)
and secure multi-party computation (MPC), which jointly guarantees
the privacy of the input data and computing logic. The trustless com-
puting on PlatON, in contrast to trusted computing that relies on
trusted hardware or TEE (e.g. SGX) provided by third party manufac-
turer for computing integrity, only depends on falsifiable cryptographic
assumptions, thereby providing unprecedented security of private data
through its lifetime without a trust boundary.

On PlatON, computation is separated from the on-chain consen-
sus, thus not bounded by the scalability trilemma of blockchain, attain
excellent scalability and decentralization without compromising safety
and privacy. By breaking down the computation to basic computation
elements, individual gate or circuit, PlatON sends these to multiple
computing nodes to be executed parallelly, vastly elevating the hori-
zontal scalability and range of distribution of participation. Moreover,
no redundancy is necessary once the proof is quickly verified to validate
a transaction, expediting the process and overall throughput.

The traditional zk-SNARK/STARK technology could not address
the input privacy problem when outsourcing the computation to other
nodes. This is why we can build VC with a deterministic prover/worker
procedure instead of the full mechanism of SNARK (zk-SNARK). We
would like to stress that all currently known constructions of zk-SNARK
relies on some ad-hoc and quite non-standard complexity assumptions,
such as even stronger variants of knowledge-of-exponent assumption,
and they are often complex and hard to interpret. We don’t know if
these new assumptions will stand the test of time.

As a well-known VC scheme, SNARK generates constant-sized proofs
for any NP statement, and have extremely fast verification time. How-
ever, the provers/workers of such a system need to spend quasi-linear
time O(nlogn) in generating a proof. In our VC, though size of the
proof is slightly larger (logarithm in the size of the target function,

CHAPTER 1. TRUSTLESS COMPUTING 14

which is the same asymptotic complextity as STARK, but with shorter
concrete length), but it admits much more efficient workers (generating
a proof in linear time), and this lower time complexity of the worker
is more desirable in our scenario. In the future, we will explore the
possibility of parallelizing the computation of the worker, and make

proof-generation more efficient.

Chapter 2

Strategic Position

Dapps Decentralized Artificial Intelligence

App Chain | App Chain [App Chain

Blockchain Blockehain

e asegy

Figure 2.1: PlatON’s overall architecture

PlatON’s overall architecture is summarized within the red dotted
line in Figure 2.1. PlatON provides a complete trustless computing
infrastructure that can be used for Dapp or scale other blockchains.
PlatON’s own blockchain is the base chain that incentivize the com-
puting nodes and store states and computation proofs.

PlatON is designed as an infrastructure including computing, stor-
age, service discovery, etc. for diverse decentralized systems that covers
other blockchains, decentralized Al, scientific computation and more.
The initial goal is to construct a trustless computing platform with

cryptographic based verifiable computing, as a solution for the scalabil-

15

CHAPTER 2. STRATEGIC POSITION 16

ity, privacy and verifiability challenges that impeded blockchain. The

following are the key components of the system.

e Off-chain verifiable computing, that scales horizontally with
the number of nodes, is used to perform heavy and complex com-
putation, while generating computation proof to attest to the cor-

rectness of the results.

e Secure multi-party computing and homomorphic encryp-
tion guarantee the private data in an encrypted form or jointly
compute different functions (applications) with multi-party in-
puts through entire computation process, eliminating the trust

boundary.

e Compilers transform computation functions into circuits
which are distributed by the blockchain to different computation
nodes. Functions represented by circuits can be executed with

better concurrency and decentralization.

¢ Computing hardware. The circuit based computation natu-
rally fits the architecture of FPGA, thus gain advantage in capac-
ity and cost using specifically developed FPGA/ASIC hardware.

On top of the trustless computing platform, PlatON deploys its own
blockchain as an immutable database to store states and proofs. The
blockchain will also be used as a settlement layer to facilitate transac-
tions and to incentivize participation as computing nodes and verifica-

tion nodes. The main features of the blockchain are described below.

e Appchains can be created by sharding specifically to serve di-

verse applications.

« LAT is the native digital asset on PlatON to support all
economic activities especially purchasing large scale computing
service. This digital asset will be used as the basic unit for com-

puting power and main form of payment.

e Smart contract is available on the base chain to provide diverse

data service to dapps or other blockchain

Chapter 3

Technical Solution

3.1 Computing

3.1.1 Verifiable Computing

A publicly Verifiable Computation(VC) scheme allows a computation-
ally limited client to outsource to a worker the evaluation of a function
F on input u. The client can then verify the correctness of the re-
turned F'(u) while performing less work than required for the function
evaluation.

More formally, publicly VC is defined as follows.
Definition. A publicly verifiable computation scheme VC consists of

a set of three polynomial-time algorithms.

o The randomized key generation algorithm KeyGen(F,\) : On
input the function F' and a security parameter A, it outputs a

public evaluation key FKp and a public verification key V Kp .

o The deterministic worker algorithm Compute(EKp,u): On input
the evaluation key EKp and input u, it outputs the result y

(expecpted to be F'(u)) and a proof m, of y’s correctness.

o The verification algorithm Verify(VKp,u,y,m,): On input the
verification key V Kp,u, the expected result y and the proof m, ,
it outputs 1 if y = F(u), and 0 otherwise.

17

CHAPTER 3. TECHNICAL SOLUTION 18

The triple of algorithms of a VC are required to satisfy the following

properties:

e Correctness. For any function F' and any input w, if y is com-
puted as expected, then the Verify algorithm will accept the proof.

o Unforgeability. For any function F' and any probabilistic polynomial-
time adversary, it is computational infeasible to produce a ac-
cepted proof 7 ,while y # F(u).

o Efficiency. It is required that the complexity or the running time

of Verify is cheaper than evaluating F .

In PlatON, we additionally require two notable features of our VC
scheme:

e Worker-efficiency. It is relatively efficient for a worker to gen-

erate a correctness proof for a function value.
e No Trusted Setup procedure involved.

The state-of-the-art constructions follows the paradigm by trans-
forming the target function F into an arithmetic circuit and then repre-
senting the circuit as Hadamard-product relation and linear constraints.

More specifically, any multiplication gate of fan-in 2 has three wires;
‘left’ and ‘right’ for the input wires, and ‘output’ for the output wires.
In the relation ar,ar,ao are the vectors in Z, of left inputs, right
inputs and outputs for each multiplication gate, respectively. It should
satisfy the relation aj o ag = ao, where o is pair-wise multiplication.
Other addition gates and constant gates will be encoded into matrices
Wir,Wgr,Wo and a vector c in Z,. The additional constraints are of
the form:

Wi -ar+Wg-ap+Wpo-ap =c.

The worker will generate a short proof according to the Hadamard-
product relation with the constraints under the discrete logarithm as-
sumption. The client could verify it very efficiently. More details of the
VC scheme are as follows.

The algorithm KeyGen(F,\) taking as input a circuit that com-

putes the target function F' and the security parameter A\, outputs the

CHAPTER 3. TECHNICAL SOLUTION 19

vectors g,h € G™, W, Wg,Wo,c and a cryptographic hash function,
which serve as evaluation/verification key.

In the algorithm Compute(EKp,u), the worker first computes the
function F' on a given input and then generates a correctness proof in
the following way. The worker computes the vectors ay,, ar, ao from the
structure of the circuit. The worker generates random values y, z from
using the publicly known hash function, then computes two vectors Y, Z
based on y, z respectively. Instead of proving the relations and directly,
the worker proves the following relation (3.1):

(aL,aROY> — <ao,Y> +<Z,WL -ar, + Wgr-ar + Wo ~a0)
+k(y, 2) = (Z,¢) + k(y,z) (3.1)

where k(y, z) is a polynomial can be computed by both parties.The

worker generates two polynomials:
(z) = ap-x+ao-2>+Y 1o(Z-Wg)
r(x) = Yoar-a—-Y+Z - (W -z+Wpo)

and encodes the left side of (3.1) into the second coefficient of the inner
product polynomial ¢(z) = (l(x),r(x)), leaving the right side for the
client to compute. The worker randomly generates a uniform value s
from Z; and use the publicly known hash function to computes the
vectors | = I(s),r = r(s), and the value t = (I,r). Finally the worker
sends the proof © = (ar,ar, ao,t1,ts,1,7) to the client.

In the algorithm Verify(VKp,u,y,m,), upon receiving the proof,
the client first gets y, z using the hash function and then obtains the
vectors Y, Z , along with the polynomial k(y, z),and then computes the
random value s from hash function. Finally the client checks the proof
for the relation (3.1) by verifying the following conditions.

I = ap-s+ap-s*+Y to(Z-Wg)-s
r = Yoar-s—Y+7Z - (W s+ Wp)
(Lry = ti-s+{Z,c)+k(y,2)) s*+t3-5°

In order to reduce the proof size, the worker can store the vectors

ar,aR,ao,l,r into three group elements:

Ar=g"*h"" € G, Ap=g"° €G, P=¢'h"" €G

CHAPTER 3. TECHNICAL SOLUTION 20

where A’ can be computed from h, and P = A3 ~ASO2 WY wp - ws - w,

with:

zZ-W -1 . Z-W.
w, = I L gY o(Z WR)’ Wy = h o

, Wr =

After that, the worker executes an inner product argument system
(which can be done in a short and non-interactive proof by applying
Fiat-Shamir heuristic) with the client in which the worker proves the

following relation:
{(9./ €G",PEG,tE€Ly; L,r€Zl): P=g'h'" Nt=(,r)}

On PlatON; VC is coupled with computing channel to guarantee
computation integrity. As shown in the figure below.

Meta Smart Contract
on-chain o) —>
VC Control Parameter Application/Function
-~
o VC Protocol] +—| Sub-Cireuit___| =
off-chain . — e
J <—>‘ Sub-Circuit ‘ < > s
‘ 4—»‘ Sub-Circuit ‘ 2
‘ <—>l Sub-Circuit l
mL,m2,....

Figure 3.1: Overview of off-chain VC workflow

As shown in Figure 3.1, Clients broadcast computation tasks in the
form of a smart contract containing all necessary parameters required
for VC and methods of circuit compilation and other corresponding
economic incentives. The rest of the meta smart contract would be the
specific application or function.

The computing channel transfers the on-chain meta smart contract
off-chain. The compiler converts the computing/application part of
the meta smart contract to circuits then further splits them into sub-
circuits as required by the algorithm. The sub-circuits are distributed
to random computing nodes where the computing takes place in paral-
lel for efficiency. To control the computation integrity, the computing

CHAPTER 3. TECHNICAL SOLUTION 21

node must, during the computing process, also generates a proof at the
same time according to the VC algorithm. After submitting the com-
puting results, the proof generated by VC algorithm cryptographically
is evaluated to check the correctness of the computation output. In
the nature of VC, the time and cost spent on the verification must be
much lower than the native computation, plus the significantly reduced
overhead on the computing nodes by recent advances in the research of
VC, off-chain VC is overall more scalable and cheaper than consensus
based on-chain computing.

Through contract as computation, PlatON compiles computation/smart
contracts into circuits. Complex computations are broken down into
sub-tasks in circuit form. An incentive mechanism together with com-
putation as a contract is then used to persuade idle computing power
on the network to compute the sub-tasks. Through VC technology,
the results of sub-tasks computed by heterogeneous computing power
can be verified for a tiny amount of computing cost. VC links “con-
tract as computation” with “computation as contract” to truly realize
the harnessing of global heterogeneous computing power for parallel
computing.

Unlike conventional blockchain technology, there is no need for each
individual to repeatedly verify transactions through smart contracts.
When using VC and smart contracts in circuit form, nodes only need
to verify the legitimacy of transactions in a very short amount of time
in order to verify whether the new state was computed from the old

state through a smart contract.

3.1.2 Privacy-Preserving Computing

On PlatON, secure MPC and HE are combined to achieve complete
privacy-preserving computing, thereby maintain the privacy of the code
and data during any operation. Different from other efforts in off-chain
computing based on TEE/SGX, data on PlatON is protected through
the full cycle and lifetime without any trust boundary.

CHAPTER 3. TECHNICAL SOLUTION 22

3.1.2.1 Secure Multi-Party Computation

Secure multi-party computation(MPC) was formally introduced by An-
drew Yao in 1982 and 1986. It is defined as the problem of n players
to compute an agreed function of their inputs while guaranteeing the
correctness of the output as well as the privacy of the players’ inputs.
Concretely, for n players, each player i knows input z; ,and they want
to jointly compute a pre-agreed function f(x1, ..., 2,) = y, such that all
the players learn y , but can get nothing more than that.

One of the most efficient paradigm to build general-purpose MPC
protocols is based on the garbled circuits method introduced by Yao for
the two-party case and further extended by Beaver, Micali and Rogaway
for the multi-party case.

More details of the garbled circuit technique is as follows. For
general-purpose constructions, the function f is first represented as a
Boolean circuit, without loss of generality, consisting of AND and XOR
gates. Since most real-world programs written in advanced language
contain complex data structures, this is a highly non-trivial task.

Taking two-party computation as an example, it involves two parties
called the generator and evaluator. The generator takes as input the
circuit, and writes down all the truth table of each gate. Then For each
wire ¢ in the circuit, the generator chooses two uniformly random string
(X9, X1, which is called labels, to represent 0 or 1.

After that, the generator will transfer the truth table of each gate
g into a garbled gate. Define g(.,.) : {0,1} x {0,1} — {0,1} the func-
tion of the gate g . Take the AND gate as an example, the function
JgAND is defined as gAND(O,O) = 07 gAND(O,l) = 07 gAND(l,O) =
0, ganp(1,1) = 1. Let x,y, z be the left input, right input and output
wire respectively. The generator computes four ciphertexts of each gate

g as follows.

co = HXJIXllg) ® X2
a = HX]IX,llg) & XD
2 = H(X;|X]llg) & x40
s = HX,[IX,llg) ® xs0

(3.2)

CHAPTER 3. TECHNICAL SOLUTION 23

Where H is a cryptographic hash function and g is represented as a
gate sequence string when it feeds to the hash function.

After garbling all the gates in the circuits, the generator sends all the
garbled ciphertexts together with the input labels related to his input
bits.(i.e., 0 for X and 1 for X}). Before the evaluator proceeds the
garbled circuit, he has to obtain the input labels according to his input
information. Since the labels are sampled by the generator, he has to
run an oblivious transfer with the generator to get the labels without
telling her the inputs in plain. Oblivious transfer is a very fundamental

cryptographic primitive, and satisfies the following properties.

1. The generator takes labels Xy, X7 as input, and The evaluator
takes bit b = 0/1 as input. At the end of the protocol, the evalu-
ator will get Xj.

2. The generator does not know which label is chosen by the evalu-
ator.

3. The evaluator does not know the other label X;_j.

For each garbled gate, The evaluator tries to decrypts all four ci-
phertexts with the input labels as keys, note that he could only get one
meaningful output label, and then iteratively decrypts the garbled gate
to get the output label of the circuit. Since the meaning of the output
label of the circuit will reveal by the generator at the very beginnig,
the evaluator could get the output of the computation and then send
it back to the generator.

Many optimized versions of the garbled circuit are proposed in the
literature. The Free-XOR technique enables to garble the XOR gates
(almost) for free, thus do not need any encryption on XOR gates. Row
reduction and half-gate techniques could reduce the number of cipher-
text of AND gates from 4 to 2. Very recent research result using Au-
thenticated Garbled Circuit to achieve very efficient protocols for both
two-party and multi-party case in the malicious model.

One common use case is that one party has an algorithm A and
the other party has input data z, they want to jointly compute A(x)
without compromising other information of A and z. In this case, one

should first generate a universal circuit U with the size of A and z as the

CHAPTER 3. TECHNICAL SOLUTION 24

input. The universal circuit satisfies the property that U(A,z) = A(x),
when representing A as a bit string.

Garbled circuit is one of the most efficient techniques for secure
multi-party computation. The state-of-the-art implementations could
handle millions gates per second in personal computer, which is suffi-
cient for a lot of applications.

MPC provides the fundamental technology module for collabora-
tive computing over private data, integrated with the control layer in
meta smart contracts and economic measure applied in the computing
channel on PlatON, the technology preserves privacy in applications
streaming data from multiple sources, implementing the true private-

preserving computation.

Meta Smart Contract

on-chain . . . D
MPC Control Parameter Application/Function

MPC Protocol

off-chain gj D EU -—
I

p

[Puuey) Sunndwon)

7
7\

B

W
W

Figure 3.2: Overview of MPC workflow

As shown in Figure 3.2, clients broadcast computation tasks in
the form of a smart contract containing all necessary parameters re-
quired for MPC and corresponding economic incentives. The rest of
the meta smart contract contains information about the specific ap-
plication or function. The computing channel transfers the on-chain
meta smart contract off-chain, where the compiler converts the com-
puting/application part of the meta smart contract to circuits then
dispatch them to data providers who simultaneously operate under the
MPC protocol, thus keeping the data locally and only the (encrypted)
result posted on-chain.

CHAPTER 3. TECHNICAL SOLUTION 25

3.1.2.2 Homomorphic Encryption

Homomorphic encryption is a form of encryption that allows compu-
tation on ciphertexts. Besides the original components of traditional
encryption schemes, there is another evaluation algorithm that takes
an aimed function F and encrypted data as input. It will generate an
encrypted result, when decrypted, the message is as if performing F
on the plaintext in the encrypted data. A cryptosystem that supports
arbitrary computation on ciphertext is known as fully homomorphic en-
cryption (FHE). Formally speaking, a homomorphic encryption consists

of the following algorithms.

The KeyGen(\) algorithm takes as input the security parameter,
it outputs a public key PK and a secret key SK.

o The Enc(PK,m) algorithm takes as input the public key PK and

a message m, it outputs a ciphertext c.

e The Dec(SK,c) algorithm takes as input the secret key SK and

a ciphertext, it outputs a message m.

e The Eval(PK, f,c1, ..., ¢;) algorithm takes as input the public key

PK, a function f and ciphertexts ¢y, ..., ¢; , it outputs a ciphertext

Cf.

Besides the properties of traditional public key encryption schemes.
It should satisfy the following property: If ¢; = Enc(PK,m1),...,c; =
Enc(PK,my), my = f(ma,...,my) and ¢; = Eval(PK, f,c1,...,c),
then it should have: my = Dec(SK, cy).

An encryption is called fully homomorphic if for any function f, the
above properties are satisfied.

Existing FHE schemes follows the blueprint of Craig Gentry’s boot-
strapping framework. Gentry’s amazing “Bootstrapping theorem” says
that if a scheme is homomorhpic enough to evaluate its own decryption
circuit, then it can be turned into fully homomorphic encryption that
can evaluate any function.

Based on Gentry’s Bootstrapping theorem, the main goal to design

FHE scheme is to construct a somewhat homomorphic encryption which

CHAPTER 3. TECHNICAL SOLUTION 26

is capable to handle it’s own decryption circuit. One of the state-of-
the-art constructions is based on the (ring) learning with errors (LWE)
problem. More specifically, let n be a power of 2, define a cyclotomic
ring R = Z[X]/(X"™ 4 1), for an integer ¢ > 2, let R, = R/¢qR. Define
the message space as R,. The public key is a pair of ring element
(a,b) € R2

q)
s, e are sampled from discrete Gaussian distribution.

where b = —a - s — 2e, the secret key is §= (s, —1) € R?,

Given a message m € Ry, the ciphertext is of the form &= (cg, ¢1)
, where ¢ = a -7+ 2ey, c1 = b-r+ 2e; +m, 7, ey, e are sampled from
discrete Gaussian distribution.

The decryption of the ciphertext is as follows:

where [-], means all operations are done in Z, for ¢ > 2. Note that, as

long as the norm of m + 2e; — 2¢q - s is sufficiently smaller than ¢, then
(G 8)]g=[m+2e1 —2ep-s]g =m+2e1 —2¢0- s

and the decryption equation holds.

To handle the homomorphic evaluation of the ciphertexts, one should
first represent the function f as a arithmetic circuit or Boolean cir-
cuit.Without loss of generality, arithmetic circuit over Ry is used here.
Therefore, one needs only consider addition gate and multiplication
gate in Rs.

Given two ciphertext ,cy, ¢1, to evaluate the addition gate, one just
needs to add the vectors, i.e.,Coaq = Co + ¢1 € Ry. This is because

(Cadd, 8) = (Co + ¢1,5) = (€0, 5) + (¢4, 5)

To evaluate the multiplication gate, it is more involved. Notice that
for a ciphertext ¢, it should satisfy that [(¢,3)], = m + 2¢’ for some
“error” ¢’ . Then we have that

(Go®er, 5@3) = (co, 5)- (€1, 8) = (mo+2ep) - (M1 +2€) = [momy +2¢"],

for some “error” e’

, where ® is tensor product. This means that
Co ® C1 is a “ciphertext” of mgmi under secret key s® §. To shrink the

length and transform it back to a “normal” ciphertext, a Key Switching

CHAPTER 3. TECHNICAL SOLUTION 27

technique is used. Basically, the Key Switching technique transforms
ciphertext ¢y ® ¢; under secret key §® S into a ciphertext C,q;; under
secret key § with the same plaintext. Basically G, is obtained as
Crnutt = W+ (€& ® €1), where W is a matrix and could be viewed as
ciphertexts of each element in §® § under secret key 3.

In the (R)LWE construct, error management is the most important
issue to do homomorphic operations. After a few operations (especially
for multiplication gate), the error will increase and close to ¢ and are
too large to decrypt. To handle this problem, another approach called
Modulus Switching is proposed. Briefly speaking, it transforms a ci-
phertext ¢ under modulus ¢ into a new ciphertext ¢ under modulus
¢’ with the same plaintext, and ¢’ < ¢ . This is simply obtained by
¢ = {%’ ~EJ. Using smaller modulus will shallow the decrypt circuit
and also is capable to homomorphically evaluate it with the modulus
switching technique.

On PlatON, the privacy of a single source data provider can be
protected. Under FHE, the data contributed by the provider in the
controller layer of the meta smart contract and computing channel are
endowed with complete confidentiality when transferred off-chain for

verifiable computation.

Meta Smart Contract

hai Encrypted Data O L <
on-chain M HE Control Application

Parameter IFunction

off-chain Homomorphic Evaluation

!

Verifiable Proof of the Evaluation

[puueyr) Sunndwor)

Figure 3.3: Overview of the off-chain verifiable computing workflow
under FHE

Figure 3.3 depicts the workflow of verifiable computing of a meta

CHAPTER 3. TECHNICAL SOLUTION 28

smart contract under FHE. The client writes two parts of information
into the smart contract, the first part contains HE control parameters
and incentive mechanism, the other part describes the computation
task. The information from the smart contract, once transferred off-
chain through the computing channel, is in turn compiled to circuits,
dispatched in the form of sub-circuits along with data encrypted un-
der FHE from data providers to multiple computing nodes or a single
computing node for execution. VC protocol must be performed to as-
sure the computation integrity before the encrypted results is posted
on-chain.

3.1.3 Parallel Computing

PlatON breaks computation functions in the meta smart contract down
into smaller computation tasks that are then distributed to different
computing nodes to be executed in parallel, providing high performance
and linear scalability. To guarantee execution of the computation task
within a certain time, every sub-circuit will be assigned to multiple
nodes to mitigate the risk of disconnection or overtime error, given the

prevailing availability of the participating nodes.

3.2 Circuits

In a circuit, input and output wires are connected through different
types of gates to form a “complex directed acyclic network” A circuit
made up of logic gates (e.g. AND, OR, NOT, and NAND) is referred
to as a Boolean Circuit; a circuit made up of arithmetic gates (e.g.
addition, multiplication) is referred to as an Arithmetic Circuit.

All forms of computation can be translated into circuits made up of
limited types of gates for any level of complexity. Circuits are widely
used as computing basis in cryptography due to the simplicity of its
basic components.

Circuits serve as the nexus of complex networks in PlatON. It is the
common computing format shared by MPC, ZKP, VC and HE, con-
necting all kinds of algorithms and hardware through its universality.

Circuits are the basic units of measurement for “computation” in

PlatON. Gates are the basic elements of circuits, the energy consump-

CHAPTER 3. TECHNICAL SOLUTION 29

tion for different gates varies. The total energy consumption for each
computation can be expressed as the sum of energy consumed by all
the gates in the circuit, providing a benchmark to measure and price

computation.

3.3 Computing Specific Hardware

Every meta smart contract in PlatON is compiled into corresponding
circuits. Gates of circuits are a natural fit with the hardware archi-
tecture. Converting functions into circuits and executing these gates
on a hardware platform will greatly increase calculation efficiency and
reduce power consumption/cost.

PlatON will roll out computing specific hardware based on FPGA /ASIC
at a certain stage of the project, as a key component in the next gener-
ation architecture. Once implemented, we expect a great improvement
in the performance of the platform.

3.4 Base Chain

3.4.1 Decoupling Computation from Consensus

Communication Layer Data Layer Application Layer

Light Node Full Node

Meta Smart Contract

Consensus Layer

Figure 3.4: Decoupling of Computing and Consensus Layers in PlatON

As shown in Figure 3.4, PlatON decouples the contract execution

and consensus of the blockchain, building an off-chain scalable trustless

CHAPTER 3. TECHNICAL SOLUTION 30

computing network. Such design further dissipates the power in the
blockchain in a more decentralized manner thus escalate the security of
the network, while allowing independent upgradation of both functions
for continuous improvement.

The smart contract on PlatON uses IO logic to operate on-chain
and computation function to depict the computation task which is in
turn compiled into Boolean Circuits, divided into multiple sub-circuits
then sent to computing nodes to be executed in parallel. The com-
puting nodes are randomly selected for the computation tasks, and for
availability guarantee, each sub-circuit is always sent to multiple nodes

to maintain certain level of redundancy.

3.4.2 Computing Channel

Computing nodes are required to deposit in the computing channel a
corresponding amount of digital asset to the value of computation tasks
that they are given. The deposit will be returned if the computational
proof is verified or slashed if not.

Computing channel is a system smart contract, or regarded as com-
putation state machine, in charge of tracking the state of the computa-
tion tasks. It serves as a deterministic program to assure termination
and settle of computation and issues reward or punishment according

to the correctness of results.

3.4.3 Multichain Architecture

Multiple appchains can be created on PlatON base chain by sharding.
The appchains supports independents business activities and extend
in parallel to each other. The transactions from multiple chains are
packaged parallelly with their block head store on the base chain to

achieve consensus.

Chapter 4

Technical Architecture

4.1 PlatON Network Protocol

4.1.1 Network Protocol Stack

The basic implementation of PlatON network is a decentralized struc-
tured topology completely based on RELOAD (Resource LOcation And
Discovery) based protocol and the Kademlia protocol [Kademlia]. Shown

in Figure 4.1 are the layers of the overall PlatON network structure.

Blockchain Service
Application Layer Routing Service Computation Service Storage Service Data Service

Service Discovery

Transport Layer Message T'ransport —_— Data Storage
T oy Plug-in(kademlia

(Router) Topology Plug-in(kademlia)

Network Layer Forwarding and Connection Management

Link Layer TLS DTLS

Figure 4.1: PlatON network protocol stack (based on[RFC6940])

31

CHAPTER 4. TECHNICAL ARCHITECTURE 32

4.1.1.1 Link Layer

The Link Layer ensures the secure transfer of data. A variety of trans-
mission protocols are employed to prevent eavesdropping, tampering
and spoofing; to provide secure and authenticated connections; and to
verify the source of messages and ensure the integrity of the data.

Transport Layer Security (TLS) and Datagram Transport Layer Se-
curity (DTLS) are implemented on this layer.

PlatON offers a plug-and-play mechanism for encryption algorithms
that supports standard international algorithms (including SHA256,
SHA3, ECDSA, RSA, 3DES, AES, RSA-OAEP and ECIES) on de-
mand. China’s national cryptographic algorithms (SM2, SM3, SM4,
SM9 etc.) will also be supported.

4.1.1.2 Forwarding and Connection Management

The Forwarding and Connection Management layer stores and imple-
ments the Routing Table by providing packet forwarding services be-
tween nodes. It also handles establishing new links between nodes,

setting up connections for overlay links across NATs using ICE.

4.1.1.3 Topology Plug-in

RELOAD is a P2P network framework that supports the development
of different topology algorithms for implementing a fully-distributed
non-structured topological or fully-distributed structured topological
network.

The Topology Plug-in is responsible for implementing the specific
overlay algorithm being used. It uses the Message Transport component
to send and receive overlay management messages, the Storage compo-
nent to manage data replication, and the forwarding and connection
management layer to control hop-by-hop message forwarding.

The Topology Plug-in allows RELOAD to support a variety of over-
lay algorithms. PlatON implements a DHT based on Kademlia algo-

rithm.

CHAPTER 4. TECHNICAL ARCHITECTURE 33

4.1.1.4 Data Storage

The Data Storage Layer is responsible for processing messages relating
to the storage and retrieval of data. It talks directly to the Topology
Plug-in to manage data replication and migration, and it talks to the
Message Transport component to send and receive messages.

The base RELOAD protocol currently defines three data models:
single value, array and dictionary.

4.1.1.5 Message Transport

The Message Transport layer is responsible for handling end-to-end
reliability, managing request state for the usages, and forwarding Store
and Fetch operations to the Data Storage layer. It delivers message
responses to the component initiating the request.

PlatON uses RELOAD as the basis for developing a Regional Flood-
ing algorithm that broadcasts messages quickly throughout the entire

network.

4.1.1.6 Application Layer

The communication and storage capabilities of the RELOAD base layer
are used to provide service discovery and scaling as well as routing,
computing, data, storage and blockchain services based on service dis-
covery.

The following chapters describe the network protocols of each service

on the application layer.

4.1.2 Service Discovery

In a peer-to-peer (P2P) overlay network such as PlatON, the peers
forming the overlay share their resources in order to provide the service
the system has been designed to provide. The peers in the overlay
both provide services to other peers and request services from other
peers. Possible services peers in PlatON can offer to each other include
a TURN relay service, an audio/video service, a computing service, a
SIP agent service, and so on.

CHAPTER 4. TECHNICAL ARCHITECTURE 34

A peer that wishes to use a particular service faces the problem of
finding peers that are providing that service from the Overlay Instance.

It is here that service discovery plays a key role.

4.1.2.1 ReDiR Tree

A naive way to perform service discovery is to store the Node-IDs of all
nodes providing a particular service into the DHT under a well-known
key. The limitation of this approach is that it overloads the nodes
storing pointers to service providers since all service lookup requests for
services will need to be answered by the node responsible for services.

PlatON uses the ReDiR (Recursive Distributed Rendezvous) [RFC7374]
to implement a service discovery mechanism. The ReDiR-based service
discovery mechanism is suitable for use even in overlay networks where
the number of end users that may make service discovery requests can
be very high (e.g., tens of thousands of nodes or even higher) and where
a large fraction of the peers can offer the service.

The ReDiR-based service discovery mechanism is implemented as
a tree structure of the nodes that provide a particular service. The
nodes embed the ReDiR tree into the RELOAD Overlay Instance using
RELOAD Store and Fetch requests. Only several service lookups can
get the closest service provider node.

Each tree node in the ReDiR tree contains a dictionary of entries of
peers providing a particular service. Each tree node in the ReDiR tree
also belongs to some level in the tree. The root node of the ReDiR tree
is located at level 0. The child nodes of the root node are located at
level 1 of the ReDiR tree. The children of the tree nodes at level 1 are
located at level 2, and so forth.

The ReDiR tree has a branching factor b. At every level [vl in the
ReDiR tree, there is room for a maximum of tree nodes. Each tree node
in the ReDiR tree is uniquely identified by a pair, where [vl is a level
in the ReDiR tree and j is the position of the tree node (from the left)
at that level. Each level in the ReDiR tree contains b'! key spaces.

All services providers are mapped into corresponding key space. A

tree node is responsible for the storage of each key space. Tree node

CHAPTER 4. TECHNICAL ARCHITECTURE 35

contains key space

oBitsInKEY, i ; U\ BitsInKEY 1wt . , V' +1
(G+ %) G+ —=))

for 0 < b < b. Tree node stores resource id = hash(service, lvl, j).
Figure 4.2 shows an example of a ReDiR tree whose branching factor
is 2.

Levelo— — — — — — — — (00) — — — — — — — —

Levelty — — — — (10) — — — — — — — — (L) —— — —

| | | |
(2,0) - (2,

Level 3 — — — — _— _ _—

Level 2

Figure 4.2: A ReDIR tree with a branching factor of 2 (based on
[RFC7374])

4.1.2.2 Service Registration

A node n with key k use the following procedure to register as a service
provider in the RELOAD Overlay Instance:

o Starting at some level [= [44,¢. This is generally 2.

e Node n sends a RELOAD Fetch request to fetch the contents of
the tree node responsible for key space I(l, k).

e Node n sends a RELOAD Store request add its entry to the dic-

tionary stored in the tree node responsible for key space I(l, k).

e If node n’s key is the lowest or highest key stored in the tree node
responsible for key space, node n MUST reduce the current level
by one , and continue up the ReDiR tree towards the root level
(level 0), repeating steps 2 and 3 above. Node n continue in this
way until it reaches either the root of the tree or a level at which

k is not the lowest or highest key in the key space.

CHAPTER 4. TECHNICAL ARCHITECTURE 36

e In the same way, node n also performs a downward walk from
level | = l4qr¢ Tecursively until the following condition is satisfied:
node n is the only service provider in the tree node responsible

for key space I(l,k).

4.1.2.3 Service Refresh

All state in the ReDiR tree is soft. Therefore, a service provider needs
to periodically repeat the registration process to refresh its Resource
Record. If a record expires, it must be dropped from the dictionary by
the peer storing the tree node.

4.1.2.4 Service Lookup

A service lookup is similar to service registration. We again start at
some level . At each step we get the current key space and determine

where to look next as follows:

e If there is no service provider stored in the tree node associated
with , then service provider must occur in a larger range of the

keyspace, so we set and repeat, or fail if level is equal to 0.

e If k is sandwiched between two client entries in , then the service

provider must lie somewhere in a sub-space of . We set and repeat.

¢ Otherwise, the returned result must be the service provider closest

to key (k) and the lookup is done.

4.1.3 Computing Service

Effective high-speed communication between computing nodes becomes
very important in PlatON. Computing services based on the RELOAD
protocol implements the publication of computing services, the discov-

ery of computing services, and the creation of computing sessions.

4.1.3.1 Publication of Computing Service

When a computing node joins the PlatON to provide its computing
service, before it registers as a computing service provider it must use
the STUN protocol [RFC5389] to determine whether it is located behind

CHAPTER 4. TECHNICAL ARCHITECTURE 37

a NAT device. If it is already behind a NAT device then it must use
service discovery to find a TURN service provider in order to obtain
a relay address. Computing nodes must register its own IP address or
the relay address with the PlatON network.

When a node publishes its computing service, it uses the service
discovery protocol to carry out service publication and refreshes. The
node publishes itself to the key space I(l, power) with power being the

computing power provided.

4.1.3.2 Discovery of Computing Service

PlatON computations must lookup matched computing service provider
with required computing power in key space , using the service discovery

protocol.

4.1.3.3 Distrubution of Computation Tasks

PlatON is packed with a RELOAD-based computation task distribution
protocol. Computation tasks are distributed to computing nodes that
provide computing services through P2P communications. To ensure
computation reliability and performance, a certain degree of redun-
dancy is maintained during the distribution of computation tasks. In
other words, computation tasks are distributed to multiple computing

nodes at the same time.

4.1.3.4 Secure Multi-Party Computation Protocol
PlatON is packaged with RELOAD-based GC and OT protocols to

support MPC. Computing sessions are created by multiple parties over
the SIP protocol.

4.1.4 Blockchain Service

Blockchain nodes use the message transport component of the RELOAD
framework to synchronize transaction and block. Block producers also

use the base RELOAD protocol to communicate with each others.

CHAPTER 4. TECHNICAL ARCHITECTURE 38

4.1.4.1 Adding Blockchain Nodes

Multiple blockchain nodes can operate concurrently on the PlatON net-
work. Blockchain nodes exist as a special type of "service” within the
PlatON network. When a node chooses to join a designated blockchain,
it must use the service service discovery mechanism to publish itself as
a provider of the designated blockchain service (service name must be
the name of the designated blockchain).

Client-initiated transactions can use the service discovery mecha-
nism with the blockchain name to find and launch a blockchain trans-

action with a node for the designated blockchain.

4.1.4.2 Forwarding of Transaction

The rapid broadcast capability of the RELOAD message transport com-
ponent is used to quickly disseminate blockchain transactions through-

out the entire network and pack them into a block.

4.1.4.3 Block Synchronization

Every full node in PlatON maintains a complete copy of blocks data.
Once block consensus is achieved, it is broadcast throughout the entire
RELOAD overlay network. Once it has been received and verified by
each node, it is stored locally.

Synchronization of blocks data is also based upon the base RELOAD
protocol.

4.1.4.4 Proof of Verifiable Computation — Giskard

In the Giskard consensus algorithm, block producers are elected us-
ing their weighted computing contribution. This election action is
a blockchain transaction. block producers produce and verify blocks
through the asynchronous BFT protocol which is based upon the base
RELOAD protocol.

4.2 PlatON Network Structure

As shown in Figure 4.3, the PlatON network is a RELOAD overlay

network and all nodes must join the RELOAD overlay network,each

CHAPTER 4. TECHNICAL ARCHITECTURE 39

o . Master Chain .
Application Chain Application Chain

,,——"""70\ —
I)]‘," /L L)= I"F @ Blockehain Light Node
. - .
N in I
| s) Blockehain Full Node

4
O Blockehain Producer

@ © o0

P2P Network

@ Data Node

Figure 4.3: PlatON Network Structure

node has its own node ID , So, the routing information for any node in
the RELOAD overlay network can be found using its node ID.

There are multiple logical blockchains on the RELOAD overlay net-
work. Each node can choose to join one or more blockchains and become
a blockchain node. Each blockchain in the RELOAD overlay network
is a type of service; joining a blockchain means the node has regis-
tered itself as a provider of the corresponding blockchain service on
that RELOAD overlay network.

Nodes in the PlatON network can also provide certain services in-
dependent of the blockchain, including TURN, SIP, computing, data
and storage services. These services can be used by all blockchains on
the network. Service-providing nodes can obtain a variety of different

measurable economic and community incentives.

4.2.1 PlatON Nodes

Nodes in the PlatON network can be divided into two types based on
the kind of service they provide.

4.2.1.1 Basic Services Nodes

e Computing Nodes
Nodes that provide computing services to the PlatON network.

CHAPTER 4. TECHNICAL ARCHITECTURE 40

They are responsible for completing all kinds of computation
tasks.

e Data Nodes
Nodes that provide data services to the PlatON network. They
are responsible for providing data to all kinds of computation
tasks.

e« Routing Nodes
Nodes in the PlatON network can be deployed on private net-
works. Nodes within a private network can implement NAT
Traversal through routing nodes. Routing nodes provide STUN
and TURN services.

4.2.1.2 Blockchain Nodes

e Light Nodes
They only store block header and data related to the node it-
self rather than storing all block data. They rely on full nodes
for rapid transaction verification. Light nodes participate in the

network-wide broadcast of transactions and blocks.

e Full Nodes
They store all block data. Transactions can be verified locally.
Full nodes participate in the network-wide broadcast of transac-

tion and blocks.

e Block Producers
They are responsible for carrying out transactions and packag-
ing transactions data into block. In the Giskard consensus pro-
tocol, block producers are elected through their weighted com-
puting contributions and produce and verify blocks through the

asynchronous BFT protocol.

4.2.2 Multi-Chain Routing Mechanism

In the PlatON network, blockchain services adopt the concept of “Single
access point for network-wide service”. In other words, a PlatON user

can send a transaction from any node on the network to any application

CHAPTER 4. TECHNICAL ARCHITECTURE 41

chain without having to actually establish a direct connection with the
target application chain node. This implies that blockchain routing is
transparent to the user.

In the PlatON network, each blockchain is a type of service. When
a blockchain node joins the designated blockchain, it registers itself
as a service provider for the corresponding application chain. The
blockchain node uses the service discovery protocol for service pub-
lication and refreshing. The node publishes itself to the key space
1(l,NodeID) with NodeID being the blockchain node ID. Each blockchain
ultimately forms a ReDIR tree in the PlatON network.

PlatON users can connect to any node on the network and use the
node to lookup the key space I(l, random) of the designated blockchain’s
ReDIR tree, in which random is the random hash value that is used to
randomly find a node in the specified blockchain. If the lookup is suc-
cessful then a transaction can be launched directly with the blockchain

of the corresponding node.

4.3 Meta Computing Framework— Monad

The computation essentially consists of the algorithm, data,
and computing power.

The monad aims to effectively integrate heterogeneous algorithms,
data and computating resources all over the world and then engage in
extensive and in-depth transactions of data and computing power.

The monad not only uses parallel computing and computing specific
hardware to improve computation performance, a variety of crypto-
graphic algorithms such as MPC, VC, HE, and ZKP are also integrated

to ensure verifiable computation and data privacy.

4.3.1 What is Monad

The monad is a scaling solution that brings scalable computation and
transaction throughput to blockchain. The monad implements off-chain
computing for linear computing scalability, and integrates a variety of
cryptographic algorithms for privacy and verifiability, and uses parallel

computing and computing specific hardware for high performance.

CHAPTER 4. TECHNICAL ARCHITECTURE 42

4.3.2 Participants

Monad participants are divided by their ability type into: computing
requester, algorithm provider, data provider, computing power provider

and computing collaborator.

4.3.2.1 Computing Requester

This generally refers to external users that call the meta smart contract

through the client terminal to trigger computation.

4.3.2.2 Algorithm Provider

Refers to the publisher of the meta smart contract. The algorithms
contained within the meta smart contract defines computation func-
tions and input/output format. Computation functions are compiled
into circuit. The algorithms are published along with the meta smart
contract to the PlatON platform.

4.3.2.3 Data Provider

In the PlatON platform, the data provider is also referred to as the
data node that stores data in local database.

The data provider provides the data used for computation based on
the input format defined by the algorithm.

The block producer is a special type of data provider and is in fact

the provider of on-chain data.

4.3.2.4 Computing Power Provider

Accepts and executes computation tasks (including algorithm and data).
Also known as the computing node in the PlatON network.

4.3.2.5 Computing Collaborator

The computing collaborator is responsible for obtaining the data and
then combining the data with the computation function to form com-
putation tasks. Computation tasks are then distributed to computing
power providers for computation. The computing collaborator is gen-

erally a data provider as well.

CHAPTER 4. TECHNICAL ARCHITECTURE 43

4.3.3 Computation Tasks
4.3.3.1 Data Source

The data of computation tasks can be divided into sole-source data and

multi-source data.

e Sole-Source Data
Data comes from a single data provider. If the data provider is a

block producer then the data source is on-chain.

¢ Multi-Source Data

Data comes from multiple on-chain and off-chain data providers.

4.3.3.2 Computation Classification

Different types of computation tasks are supported by monad. These
can be divided into verifiable proxy computation and privacy-preserving

proxy computation.

e Verifiable Proxy Computation
The privacy of the data does not need to be guaranteed during
the computation process. Once the computation is completed by
the computing power provider, the proof of correctness is returned

along with the results for verification by the computing requester.

In the case of multi-source data, each data provider carries out

their own verifiable proxy computation.

e Privacy-Preserving Proxy Computation
The privacy of the data must be guaranteed during the computa-
tion process. Sole-source and multi-source data can both be used
with privacy-preserving proxy computation though different cryp-
tographic algorithms are used. These will be described separately

in a later chapter.

4.3.4 Computing Channels

Computing channels in PlatON are implemented as a special contract
that ensures the validity of the computation through cryptographic
proof and timelocks.

CHAPTER 4. TECHNICAL ARCHITECTURE 44

Computing channels will usually deduct a set amount of the transac-
tion requester’s digital assets to serve as a deposit for the computation
task. Once the task has ended and settlement has been completed the
remaining digital assets are returned to the transaction requester.

At the end of computation, all participants can send a transaction
to the computing channel contract. The channel can then be closed
and the settlement process triggered. The computing channel does not
carry out settlement right away however. A timed window is open, dur-
ing which time participant can submit a dispute over the computation
process.

The blockchain can therefore be considered to be a kind of “cryp-
tographic court” and serve as an arbitration method on the PlatON
network. As the final method for providing transaction security, this

greatly reduces the incentive for fraud and forgery.

4.3.5 Execution of Computation Tasks
4.3.5.1 Allocation of Computing Resources

When a computing node joins the network, it publishes itself as a com-
puting service. The node will automatically detect and measure its
computing power that will be published as computing service capac-
ity.

When computation tasks are being distributed by computing col-
laborator, the first step is to lookup matched computing nodes with
enough computing power. The service discovery protocol is used
to lookup computing nodes that match the computing power require-
ments at random on the network. Computing nodes with high contri-
bution scores are then selected based on their computating contribution
ranking. To guarantee fairness and encourage more nodes to provide
computing services, some of the newly added computing nodes will be

selected at random as well.

4.3.5.2 Verifiable Proxy Computation

The algorithm provider can specify “verifiable” computational require-
ment when releasing the computation function. When the contract is

being executed, the computing collaborator sets up the parameters of

CHAPTER 4. TECHNICAL ARCHITECTURE 45

the VC algorithm and breaks the circuits in the contract down into
multiple sub-circuits.

The computing collaborator combines the VC algorithm parame-
ters, sub-circuits, and input data into multiple sub-asks that are then
distributed to multiple computing nodes. A single sub-task will be
simultaneously distributed to multiple computing nodes to guarantee
the soundness of the computation. A certain amount of redundancy in
computation is retained for cross-validation.

While the sub-task has been computed, a proof of correctness is
generated through the VC algorithm by computing nodes and returned
to the computing collaborator. Once the proof verified, the gates num-
ber of sub-circuit is translated into the value of computing contribution
that will be credited to the account of the computing power provider.
The computing power provider then is rewarded proportionately.The
Verifiable Proxy Computation Process is shown in Figure 4.4.

Computation ‘

Task
Computing l

Collaborator

| Circuit |

Computation l

Result &

Computing proof

Figure 4.4: Verifiable Proxy Computation Process

4.3.5.3 Sole-Source Data Privacy-Preserving Computation

Sole data sources can make use of all computing resources on the net-
work without revealing the raw data. When the contract is being ex-

ecuted, the computing collaborator sets up the parameters of the

CHAPTER 4. TECHNICAL ARCHITECTURE 46

homomorphic and VC algorithms then breaks the circuits in the con-
tract down into multiple sub-circuits.

The input data encrypted using homomorphic encryption algorithm
is combined with the VC algorithm parameters, sub-circuits into multi-
ple sub-asks that are then distributed to multiple computing nodes. A
single sub-task will be simultaneously distributed to multiple comput-
ing nodes to guarantee the soundness of the computation. A certain
amount of redundancy in computation is retained for cross-validation.

The computing node performs homomorphic computation on the
ciphertext based on the sub-circuits. The VC algorithm is also used to
prove the correctness of execution. The encrypted computation results
and proof of correctness are returned to the computing collabora-
tor. The computing collaborator first verifies the proof before decoding
the ciphertext to obtain the result. Once the proof verified, the gates
number of sub-circuit is translated into the value of computing con-
tribution that will be credited to the account of the computing power
provider, the computing power provider then is rewarded proportion-
ately. The Privacy-Preserving proxy computation process for sole-source

data is shown in Figure 4.5.

Publish
Algorithm

Figure 4.5: Privacy-Preserving proxy computation process for sole-
source data

4.3.5.4 Multi-Source Data Privacy-Preserving Proxy
Computation

Multi-Source computation tasks can be computed collaboratively by

multiple data providers to obtain the results while also guaranteeing

CHAPTER 4. TECHNICAL ARCHITECTURE 47

data ownership and privacy through the MPC algorithm.

The classic Yao’s Garble Circuit algorithm involves generator and
evaluator.

The generator select a random number as label for each wire in the
circuit, and encrypts the output label with the input label for each gate,
and then finally, circuit is converted into garbled circuit. Evaluator
obtains the labels correlated with both input data through OT protocol,
and deciphers the garbled circuit to get the ultimate result.

As GC generator, The block producer distributes computation tasks,
setting up GC and VC algorithm parameters when the contract is being
executed. The block producer selects labels randomly and breaks the
circuits down into multiple sub-circuits. Sub-circuit is combined with
labels into multiple sub-asks that are then distributed to multiple com-
puting nodes. Computing nodes performing the sub-task computation
must also use the VC algorithm to generate a proof of correctness and
return it to the block producer for verification.

At the same time, as a GC evaluator, the data provider obtains
the labels related to its inputs data through the OT protocol with the
GC generator. This process can be conducted concurrently with the
distributing of computation tasks by the GC generator.

After obtaining the labels and garbled circuits, GC evaluator can
publish a computation task for deciphering the circuit as the GC gen-
erator publish,, except that it must provide a GC decryption algorithm
for its computational requirement.

An incentive mechanism is also used to encourage worldwide com-
puting nodes to perform the resource-consuming encryption and decryp-
tion of circuits concurrently, and then idle computing resources can be
fully utilized, and the data flowing and privacy protection can get a
massive boost. The Privacy-preserving proxy computation process for

multi-source data is shown in Figure 4.6.

4.3.6 Computing Specific Hardware

Every meta smart contract in PlatON is compiled into corresponding
circuits. Gates of circuits are a natural fit with the hardware archi-

tecture. Converting functions into circuits and executing these gates

CHAPTER 4. TECHNICAL ARCHITECTURE 48

Oblivious Transfer

10p1a0ag wpLoS]y

Figure 4.6: Privacy-Preserving proxy computation process for multi-
source data

on a hardware platform will greatly increase calculation efficiency and

reduce power consumption/cost.
PlatON will divide development and rolling-out of computing spe-
cific hardware into the following stages:

e Stage 1: Design the IP for suitable hardware and implement the
corresponding hardware devices through FPGA.

o Stage 2: License IP to ASIC/ASSP/SOC manufacturers and
help them incorporate support for meta computing framework

acceleration into their designs.

e Stage 3: Implement the ASIC chip to provide ecology partners
with an IC-grade solution.

To promote the full-scale roll-out of the next-generation computing
framework, PlatON will maintain an open approach to cooperating
with all types of eco-system partners. We strongly believe that true
improvements to network performance can only be achieved through
collaborative hardware evolution. Only then can our vision for a next-

generation computing framework be realized.

CHAPTER 4. TECHNICAL ARCHITECTURE 49

4.4 Proof of Verifiable Computation — Giskard

To avoid wasting computing power and improve consensus performance,
the PoW method is not used in Giskard. Some nodes will be selected to
participate in the consensus by means of election and randomization.
To select nodes that are truly active and honest, Giskard elections
are based on the value of computing contribution. The value of comput-
ing contribution can be used to measure the contribution and honesty

of a node.

4.4.1 The Value of Computing Contribution

The account in PlatON has multiple attributes such as fund balance,
computing contribution, and so forth. Such an account have con-
tributed to depict user’s behaviors throughout the network more ac-
curately.

The value of computing contribution is the amount of verified com-
puting power provided by computing nodes. All computations in Pla-
tON must be interpreted as circuits. Cost of computation is directly
proportional to the number of gates whose weights are different. Corre-
sponding to different weights, every gate has different computing con-
tribution score. The value of computing contribution of a computing
node is the total score of all gates in circuits the computing node exe-

cuted.

4.4.2 Proof of Verifiable Computation

“Those who labor with their minds become rulers; those who labor
with their bodies become the ruled.” The fully digital world will give a
completely new twist and interpretation to such a governance structure.

Computation is the basic process and essence of everything. Though
those who labor with their minds (the thinkers) or bodies (the laborers)
appear to belong to different layers, they have all essentially participants
or initiators of computation processes.

We believe the value is created through work in the PlatON net-
work. All the power that thinkers possess originate from the laborers
and they should be generated from the laborers as well. All of the

CHAPTER 4. TECHNICAL ARCHITECTURE 50

decisions they generate should and must satisfy the natural interest of
the laborers as well. There is of course a variety of ways for creating
value from work. An inclusive network should be compatible with dif-
ferent scales of measurement, including calculating the dimensions of
computing contribution when assessing their overall weighting. Such
an ideal can be guaranteed through the use of a suitable algorithmic
mechanism.

In PlatON, some block producers are elected through continuous
real-time voting, another block producers are randomly selected by Ver-
ifiable Random Functions(VRF). Every node has the right to vote, the
number of votes is determined by the value of computing contribution.
The election process is repeated in the next cycle.

Block producers use an asynchronous BFT algorithm to generate
blocks and form a consensus. Malicious block producers will be dis-
qualified and a certain amount of computing contribution and Energon
will be deducted as punishment. Block producers split and distribute
the computation functions in the contract to multiple computing nodes
when generating blocks. Each computing node returns the result as well
as a proof of the computation. The result and proof is packaged by the
producer to the block. Other nodes only need to verify the proof to
determine the validity of the block. Block verification time is therefore
greatly reduced and transaction performance improved.

The election, voting and block generation mechanism for candidate
blocks is not only a technical problem but also a multiple-choice ques-
tion on community ideals and governance model. This is an area which
this technical white paper will not look into too great detail here. Com-
munity feedback will instead form the basis for proposals on ecology

governance that will be released at appropriate times.

4.5 Meta Smart Contract — Sophia

Smart contract in PlatON is completely different from the conventional
one. An innovative "Meta Smart Contract” is proposed by PlatON as

a computing-oriented smart contract for the computing world.

CHAPTER 4. TECHNICAL ARCHITECTURE 51

4.5.1 Types of Meta Smart Contract

PlatON is essentially a distributed service platform with a server-less,
decentralized topology. The meta smart contract is then a Functions
as a Service (FaaS) application deployed on the network.

Users can publish their services to the outside world by simply sub-
mitting their meta smart contract code to the PlatON platform. They
will only need to pay for the resources consumed during the execution
of that code.

PlatON divides the meta smart contract into the three following

types.

4.5.1.1 Stateful Contract

A stateful contract is similar to the conventional smart contract.

This type of smart contract needs to preserve its state on the chain.
When a stateful contract is executed, the input data comes from the
distributed ledger on the chain. Every time the contract is executed it
changes the state of the contract. All changes are also recorded in the
distributed ledger.

As shown in Figure 4.7, contract computations are broken down
into multiple sub-tasks and distributed to multiple computing nodes.

The contract developer can choose the privacy-preserving computation

® Deploy

Figure 4.7: Stateful Contract

mode to ensure that the data is not revealed to the computing nodes.

4.5.1.2 Stateless Contract

Stateless contract does not preserve any states on the chain.

CHAPTER 4. TECHNICAL ARCHITECTURE 52

As shown in Figure 4.8, when a stateless contract is executed, the in-
put data comes from the local database of the off-chain data provider. It
can be a single source data provider or a multiple source data providers.

The computing process for a single source data providers is identi-
cal to that of the stateful contract; if there are multiple data providers,
then the MPC protocol is used for multi-party collaborative computing
to guarantee ownership over their respective data. Actual computa-
tions are broken down into multiple sub-tasks and distributed to mul-
tiple computing nodes. The contract developer can choose the privacy-
preserving computation mode to ensure that the data is not revealed

to the computing node.

[] Deploy

Algorithm Provider

[] Transaction Invoke
Stateless Contract Computing Channel Contract

Computation Requester

Proof of Work

Generate block (including transaction,

result and Proof of Computation)
Block

Contract Run-time

Environment
Ledger
Block Producer

Data Provider Data Provider Data Provider
(Computi (Computing (Computing
Collaborator) Collal Collal)
Verifiable Computation Proof of Computation

Computing Power
Provider

Computing Power Computing Power
Provider Provider

Figure 4.8: Stateless Contract

4.5.1.3 Hybrid Contract

PlatON also allows smart contracts to both store their state on the chain
and involve off-chain data in the computation. This type of contract is
known as a hybrid contract.

CHAPTER 4. TECHNICAL ARCHITECTURE 53

Hybrid contracts are essentially a form of multi-source data com-
putation where the block producer participates in the computation as
the provider of on-chain state data. A classic application for the hybrid
contract is to write the results of off-chain data to the chain for the use

in the next computation.

4.5.2 Virtual Machine of Meta Smart Contract

PlatON compiles meta smart contracts into circuits so that computa-
tion performance can be accelerated in conjunction with parallel com-
puting and computing specific hardware. Developers can use popular
programming language such as java to develop meta smart contract. A
specialized compiler will be provided to compile meta smart contracts
into circuits.

In addition to providing computing specific hardware that can exe-
cute meta smart contracts directly, PlatON also provides meta smart
contract virtual machines that can carry out meta smart contracts un-
der different software and hardware environments or for integration into

other blockchain projects.

Chapter 5

LAT

PlatON consists of the master chain and multiple application chains.
Fach chain operates independently and are logically parallel to each
other. The master chain is the initial chain of the PlatON network.
Application chains are vertical chains that spring from the master chain

to solve industry-specific problems.

5.1 On-chain Digital Energon

PlatON is a service-oriented computing architecture. In addition to
providing computing, data, storage, network and other basic services,
application developers can also publish their application services in Pla-
tON. Each application running on PlatON needs to consume a certain
amount of resources (including computing power, bandwidth, storage,
data, etc.).To achieve the fair and reasonable use of resources and avoid
the abuse of resources, PlatON realizes the reasonable dispatch and val-
idation of resources through a series of algorithms and uses LAT to
measure the use of resources. LAT is also the energy that drives
PlatON to compute. Each application chain can also create its LATs.

In the PlatON network, users need only a single unified account
to manage and use their LATs . LATs of different chains can be

transferred freely across the chain.

54

CHAPTER 5. ENERGON 95

5.2 Cross-Chain Transfer of Energon

The cross-chain transfer of LAT across the PlatON network is car-
ried out through a special Contract called the LAT Exchange Con-
tract (EEC), which is built into the master chain and each application
chain. The EEC smart contract uses [two-way peg] and [atomic

swap| technologies to achieve LAT cross-chain transfer.

Chapter 6

Technology Roadmap

The technology roadmap for PlatON is shown in Figure 6.1
Timeline

Phase 1: Dawn

Q4 2018 1 Baleyworld
Launch a test version as a MVP(Minimum Verifiable Product).

Launch PlatON client.

Q3 2019 1 Trantor
PlatON primary network goes live,

with complete MPC+ VC and Giskard.
Phase 2: Sail-out
Q4 2019 Terminus

Launch a version enabling parallel computing.
Q2 2020 Gaea

Launch a conputing specific hardware.

Fully support the co-evolution of hardware and software for the future computing world.

Figure 6.1: PlatON technology roadmap

[No milestone are promised, it is subjected to changes|

e Baleyworld: Implement a complete RELOAD overlay network

and blockchain services with support for service discovery, meta

56

CHAPTER 6. TECHNOLOGY ROADMAP 57

smart contracts and VC.

e Trantor: Support a complete MPC, updated VC and Giskard

consensus.
e Terminus: Enable off-chain parallel computing.

o Gaea: Feature the version of software and hardware integration.

Release computing specific hardware.

Chapter 7

Community Evolution

7.1 Technology Evolution

PlatON network is a system still in its early infancy which is not com-
prehensive enough. What it provides now is the outline of PlatON
working as the next-generation computing architecture. Considering
the great technical challenge of the complex network PlatON built, it
must be noted that there still remains some problems with distributed
architecture, cryptographic algorithms, mechanism design of game the-
ory, hardware implementation and network building, some of which
are even common intellectual challenges of all mankind, waiting for
further breakthroughs in academia as well as progressive exploration in
engineering. With the power of the global community, we will be deal-
ing with these problems one by one and evolving step by step. Thus,
improvement and iterations would be continued to be updated in our
roadmap for the future.

7.2 Organizational Evolution

The evolution of the organization could be considered as the evolution
of the governance model to a certain degree. We believe in the power
of improvement rather than putting our faith in revolution. Human so-
ciety experiments and makes decisions through different organizational

structures and governance models repeatedly to achieve progress.

58

CHAPTER 7. COMMUNITY EVOLUTION 59

The open source blockchain community was struck by many prob-
lems such as the splitting and forking of the community, hacker attack,
contract loophole, and regulatory challenges in the past few years. Nev-
ertheless, the community retains its vitality.

As a globalized self-organizing community, the governance model
design and practice of PlatON will run into similar challenges. However,
PlatON will keep dealing with all governance challenges with the help
of joint governance, sharing, and consensus.

PlatON will be progressively involving more and more participants
such as developer communities providing for smart contracts, academic
communities providing algorithms and theory, computing communities
providing computing power, data communities providing data and re-
quirement requestors. As the interests among them will be definitely
diverse, the conflicts generated cannot be resolved through technology
or algorithms for certain. PlatON will collect the feedback from each
community to gradually refine and put forward community governance
proposals for the future.

As a complex network, PlatON, instead of favoring any party on
purpose, will encourage and support even more parties, institutions,
stakeholders, and individuals to participate in this network as always.
The more complex it is, the more prosper and stronger the network
grows.

PlatON, in the age where data sovereignty becomes increasingly
significant, has faith in the idea of “The part is unaware of the whole,
while the whole cannot know the part it contains.” , which is not only
the practice of privacy protection with cryptography but the value of
the consensus mechanism as well.

The logical foundation driving the organizational evolution of the

PlatON derives from consensus and “The Calculus of Consent”.

7.3 Network Evolution

On the basis of network-wide consensus, PlatON depends on the sharing
of global computing power, data and algorithms, built on the basis of
joint governance in the community among which network infrastructure

plays a decisive role.

CHAPTER 7. COMMUNITY EVOLUTION 60

Starting from the Internet nowadays, PlatON will keep pace with
the building and operation the global mobile Internet and space-based
Internet to support, adapt to, or even launch different types of network
and computing infrastructure whose ultimate goal is building a space-
air-ground-based network infrastructure for driving the development of
PlatON.

The network evolution of PlatON will greatly expand the commu-
nity’s horizons and continue to boost community consensus. The fol-
lowing work plan, updated regularly, will be published in the white
paper on website building at the right time.

Always down-to-earth, we are sometimes looking at the stars.

Glossary

Term

Acronyms

Definition

Algorithm Provider

The algorithm provider specifically
refers to the publisher of the meta-
smart contract in PlatON network.
The algorithm is implemented in a
meta smart contract that defines
computation functions and input

and output parameters.

Application Spe- | ASIC Application Specific Integrated Cir-

cific Integrated cuit is the integrated circuit de-

Circuit signed and manufactured specifi-
cally for the needs of a complete ma-
chine or system.

Application Spe- | ASSP Application Specific Standard Parts

cific Standard is the integrated circuit designed for

Parts use in special applications.

Atomic Swaps

An atomic swap is a proposed fea-
ture in cryptocurrencies, that al-
lows for the exchange of one cryp-
tocurrency for another cryptocur-
rency without the need for a trusted
third party. PlatON uses atomic
swap to achieve LAT cross-chain

transfer.

Block Producer

Block Producer is responsible for ex-
ecuting the transaction and pack-
aging the transaction data into
blocks.In the

agreement, the consensus node is

Giskard consensus

based on the calculated contribution
weighted equity elections and con-
sensus is reached through the asyn-

chronous BF'T protocol.

61

Byzantine Fault
Tolerance

BFT

Byzantine refers to the Byzan-
tine Generals’ Problem described by
Leslie Lamport, Robert Shostak and
Marshall Pease in 1982. Byzantine
Fault Tolerance is the ability of a
distributed network to function as
desired and correctly reach a suf-
ficient consensus despite malicious
nodes of the system failing or prop-
agating incorrect information to
other peers. Several BFT protocols
were introduced to improve its ro-
bustness and performance, Practical
Byzantine Fault Tolerance (PBFT)
is one of these optimizations and was
introduced by Miguel Castro and
Barbara Liskov in 1999.

Circuit

A common form of computation ex-
pression made up of different gates.
Known as a Boolean Circuit if made
up of logic gates, or an Arithmetic
Circuit if made up of arithmetic

gates.

Computing Re-

quester

The computing requester is an ex-
ternal client that initiates a call to a

meta smart contract.

Computing Chan-
nels

Computing channel is a system
smart contract, or regarded as com-
putation state machine, in charge of
tracking the state of the computa-
tion tasks. It serves as a determin-
istic program to assure termination
and settle of computation and issues
reward or punishment according to
the correctness of results.

62

Computing Node

A node that provides computing ser-
vices for the Platon network and is
responsible for performing various

computing tasks.

Computation Task

In PlatON, the computation func-
tion is compiled into Boolean Cir-
cuits and broken down into sub-
circuits for parallel computation.
Each sub-circuit and its inputs are

packed into a computation task.

Computing Collab-
orator

The computing coordinator is re-
sponsible for obtaining the data and
distributing the data and algorithm
to the computing provider for com-
puting.

Computing Power

The computing power provider

Provider accepts and executes computa-
tion tasks (including algorithm and
data). Also known as the computing
node in the PlatON network.

Data Node - A node that provides data services

for the Platon network and is re-
sponsible for providing data for var-

ious computing tasks.

Data Provider

The data provider provides the
corresponding data for computing
based on the input data format de-
fined by the algorithm.

Decentralized Ap-

plication

Dapp

Dapp is a distributed application
running on blockchain. Dapp is con-
sisting of smart contract and front-
end.

63

Decentralized

Structured Topol-
ogy

Based on how the nodes are linked
to each other within the overlay
network, and how resources are in-
dexed and located, we can classify
networks as unstructured or struc-
tured . The most common type of
structured P2P networks implement
a distributed hash table (DHT),in
which peers can search for resources

on the network using a hash table.

LAT - LAT is a measure of the use
of Platon resources and is the en-
ergy that drives PlatON’s ”"comput-
ing factory”. Each application chain
on PlatON can create its own LAT
independently.

Field- FPGA FPGA is an integrated circuit de-

Programmable signed to be configured by a cus-

Gate Array tomer or a designer after manufac-
turing - hence “field-programmable”.

Full Node - A full node downloads every block
and transaction and check them
against consensus rules.

Functions as a Ser- | FaaS FaaS is a “serverless” architecture

vice

that allows customers to develop,
run, and manage application func-
tionalities without the complexity of
building and maintaining the infras-
tructure typically associated with
developing and launching an app.In
a FaaS system, the functions are ex-
pected to start within milliseconds
in order to allow handling of indi-
vidual requests, and charge per exe-
cution time of the function.

64

(Fully) Homomor-
phic Encryption

Computation of the ciphertext pro-
tects privacy while providing oper-
ability. Fully homomorphic means
all operations are supported during

computation.

Garbled Circuit

GC

A method for encrypting circuits
first proposed by Andrew C.C. Yao.
It is one of the tools most commonly
used in MPC.

Interactive Con-
nectivity Establish-
ment

ICE

ICE is a NAT traversal protocol
for use in offer/answer mode. It
is mainly used for the establish-
ment of multimedia sessions under
UDP. It uses STUN and TURN pro-
tocol, and can be used by other
programs that implement the of-

fer /answer model, such as SIP.

Kademlia

Kademlia is a P2P overlay net-
work transport protocol designed by
Petar Maymounkov and David Maz-
ieres to build a distributed P2P net-
work. It is a P2P information sys-
tem based on XOR operation. It
establishes the structure of the net-
work and regulates the way in which
nodes communicate and exchange
information.

Light Node

A light Node does not download
the complete blockchain. Instead,
it downloads the block headers only
to validate the authenticity of the
transactions. Lightweight nodes use
a method called Simplified Payment
Verification (SPV) to verify transac-
tions.

65

Malicious model

A security model where the attacker
does not follow the rules during ex-
ecution. They actively tamper with
the protocol and probe honest par-
ticipants in hopes of obtaining more

information.

Meta Computing
Framework

The meta computing framework ef-
fectively integrates heterogeneous
algorithm resources, data resources,
and computing resources on a global
scale, thereby promoting data and
power transactions profoundly and
extensively. While the meta comput-
ing framework uses parallel comput-
ing and computing specific hardware
to improve computing performance,
it also integrates multiple crypto-
graphic algorithms to ensure verifi-
able and data privacy for comput-

ing.

Meta Smart Con-

tract

Meta smart contract is smart con-
tract in PlatON, it can access to on-
chain and offchain data.

Oblivious Transfer

oT

A type of secure transmission pro-
tocol that allows the two parties to
safely select tags based on the input
bits. It is one of the tools commonly
used in MPC.

66

Proof-of-Verifiable-
Computation

Consensus

Giskard

As PlatON’s
nism, Giskard elects block produc-

consensus mecha-
ers based on the value of comput-
ing contribution, and block produc-
ers use an asynchronous BFT algo-
rithm to generate blocks and form a
consensus. Giskard solves the prob-

lem of wasted power.

Proof-of-Work

Consensus

PoW

is the first dis-

tributed consensus mechanism, pi-

Proof of work

oneered by bitcoin’s pseudonymous
Satoshi

PoW, the miners compete to find a

creator, Nakamoto. In
hash with specific properties. The
miner that finds the answer first is
allowed to add a new block of trans-
actions to the blockchain and is re-
warded with a tranche of newly-

minted bitcoins.

Dis-
Ren-

Recursive
tributed

dezvous

ReDiR

ReDiR defines a service discovery
mechanism based on RELOAD and
was standardized as [RFC7374].

REsource LOcation
And Discovery

RELOAD

The RELOAD protocol is a P2P
network protocol framework pro-
posed by the IETF P2PSIP (Peer-
to-Peer Session Initiation Protocol)
working group and was standardized
as [RFC6940].The RELOAD proto-
col defines a unified overlay net-
work peer and client protocol for ab-
stract storage and message routing

services.

Routing Node

The routing node provides the

STUN and TURN services.

67

Secure Multi-Party

Computation

MPC

Participate in multi-party computa-
tion where there is no trusted third
party to obtain the computation re-
sults without revealing their respec-

tive inputs.

Session Initiation

Protocol

SIP

SIP was standardized as [RFC2543]
in 1999.The SIP is a signalling pro-
tocol used for initiating, maintain-
ing, and terminating real-time ses-
sions that include voice, video and

messaging applications.

Session Traversal
Utilities for NAT

STUN

STUN is a light-weight communica-
tions protocol to detect and traverse
network address translators that are
located in the path between two end-

points of communication.

System-on-a-Chip

SoC

A SoC is an integrated circuit that
integrates all components of a com-

puter or other electronic systems.

Traversal Using Re-
lay NAT

TURN

TURN is an extension of
STUN/[RFC5389], which de-
fines a relay protocol that enables
hosts behind Symmetric NAT to
use the relay service to transmit
packets to the peer.

Two-way Peg

Two-way Peg is a sidechain technol-
ogy proposed by Adam Back et al
in 2014. In PlatON, Two-way Peg
is used to achieve Energon’s secure

cross-chain transfer.

value of computing

contribution

The value of computing contribu-
tion is the validated effective power

provided by the user.

68

Verifiable Compu-
tation

VC

Can effectively verify whether the
returned data was derived using the
logical computation specified in the
original data.

Verifiable Random

Function

VRF

the concept of a Verifiable Random
Function (VRF) was introduced by
Micali, Rabin, and Vadhan. It is
a pseudo-random function that pro-
vides publicly verifiable proofs of its
outputs’ correctness.

Zero-Knowledge
Proof

ZKP

The Prover convinces the Verifier
that a certain fact is true without re-
vealing any other information (zero

knowledge).

69

References

[Trustless Computing Schemes]
[The Verifier’s Dilemma] L. Luu, J. Teutsch, R. Kulkarni, P. Sax-
ena. “Demystifying Incentives in the Consensus Computer”. CCS, 2015

[The Scalability Trilemmal] https://github.com/ethereum/wiki/wiki/
Sharding-FAQs this-sounds-like-theres-some-kind-of-scalability-trilemma-

at-play-what-is-this-trilemma-and-can-we-break-through-it
[Foreshadow]| https://foreshadowattack.eu/

[PlatON Network Protocol]

[RFC6940] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H.
Schulzrinne, “REsource LOcation And Discovery (RELOAD) Base Pro-
tocol”, RFC 6940, January 2014,
http://www.rfc-editor.org/info/rfc6940.

[RFC5245] J. Rosenberg , “Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT) Traversal for
Offer /Answer Protocols”, RFC 5245, April 2010,
http://www.rfc-editor.org/info/rfc5254.

[RFC7374] J. Maenpaa, and G. Camarillo, Ericsson, “Service Discov-
ery Usage for REsource LOcation And Discovery (RELOAD)”, RFC
7374, October 2014,

http://www.rfc-editor.org/info/rfc7374.

[RFC5766] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Us-
ing Relays around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN)”, RFC 5766, April 2010,
http://www.rfc-editor.org/info/rfc5766.

[RFC7890] D. Bryan, P. Matthews, E. Shim, D. Willis, and S.Dawkins,

“Concepts and Terminology for Peer-to-Peer SIP (P2PSIP)”, RFC 7890,
June 2016,

70

http://www.rfc-editor.org/info/rfc7890.

[Kademlia] P. Petar, Maymounkov, David Mazieres. Kademlia: A
peer-to -peer information system based on the XOR metric[DB/OL].
www.cs.rice.edu/conferences IPTPS02/109.pdf.

[LAT]

[Atomic Swaps| T. Nolan, Re: Alt chains and atomic transfers,
https://bitcointalk.org/index.php topic=193281.msg2224949 msg2224949,
2013.

[Two-way Peg] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G.
Maxwell, A. Miller, A. Poelstra, J. Timén, and P. Wuille, Enabling
Blockchain Innovations with Pegged Sidechains,
<https://blockstream.com/sidechains.pdf>, 2014.

[Homomorphic Encryption)]

[1] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks
and privacy homomorphisms. In Foundations of Secure Computation,
1978.

[2] C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices.
STOC, 2009.

[Zero-Knowledge Proof]

[1] S. Goldwasser, S. Micali, C. Rackoff , “The knowledge complexity
of interactive proof systems” , SIAM Journal on Computing, 1989.

[2] B. Manuel, F. Paul, M. Silvio “Non-Interactive Zero-Knowledge
and Its Applications”. STOC, 1988.

[Multi-Party Computation]

[1] A. C. Yao, Protocols for Secure Computations (Extended Ab-
stract). FOCS, 1982.

[2] A. C. Yao, How to Generate and Exchange Secrets (Extended
Abstract). FOCS, 1986.

[3] O. Goldreich, S. Micali, A. Wigderson:How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority.

71

STOC, 1987.

[Verifiable Computation)]

[1] S. Micali, “Computationally Sound Proofs”. SIAM Journal on
Computing, 2000.

[2] B. Laszlg, F. Lance, L. A. Leonid, S. Mario, “Checking Compu-
tations in Polylogarithmic Time”. STOC, 1991.

[3] S. Goldwasser, Y. T. Kalai, G. N. Rothblum. “Delegating Com-
putation: Interactive Proofs for Muggles”.STOC, 2008.

[4] G. Rosario, G. Craig, P. Bryan. “Non-Interactive Verifiable Com-
puting: Outsourcing Computation to Untrusted Workers”. CRYPTO,
2010

72

Disclaimer

This whitepaper and other documents published in association with
this whitepaper relate to the PlatON project. These documents may be
amended or replaced at any time, without notification of any changes
or access to any additional information.

Recipients are notified as follows:

e This whitepaper describes a future project: This whitepa-
per contains forward-looking statements that are based on the
beliefs of Platon international limited, a private company limited
by guarantee, incorporated in Hong Kong with company number
No. 2687091 ("PlatON?”), as well as certain assumptions made
by and information available to PlatON. The PlatON project
(“Platform”) as envisaged in this whitepaper is under develop-
ment and is being constantly updated, including but not limited
to key governance and technical features. The Token (as described
in this whitepaper) involves and relates to the development and
use of experimental platforms (software) and technologies that
may not come to fruition or achieve the objectives specified in
this whitepaper. If and when the Platform is completed, it may

differ significantly from the platform set out in this whitepaper.

e Regulatory status not assured in all jurisdictions: PlatON
intends to operate in full compliance with applicable laws and reg-
ulations and obtain the necessary licences and approvals in key
markets. This means that the development and roll-out of all the
features of the Token and the Platform described in this whitepa-
per are not guaranteed. Regulatory licences and/or approvals
may be required in certain jurisdictions in which relevant activi-
ties may take place. It is not possible to guarantee, and no person
makes any assurances, that any such licences or approvals will be
obtained within a particular timeframe or at all. This means that
the Platform and other features of the proposed the Token may
not be available in certain markets, or at all. This could require
restructuring of that ecosystem and/or its unavailability in all or

certain respects. In addition, the development of the platform is

73

intended to be implemented in stages. During certain stages of
development, the platform may rely on relationships with certain
licensed third party entities (such as exchanges). If these entities
are no longer properly licensed in the relevant jurisdiction, this
will impact on the ability of the Platform to engage with that

party or its services / functions.

No offer of regulated products or services: the Token is not
intended to constitute a security or any other regulated product
or service in any jurisdiction. This whitepaper does not constitute
a prospectus nor offer document of any sort and is not intended to
constitute an offer or solicitation of securities or any other invest-
ment or other product or service in any jurisdiction. Any offer
or agreement in relation to any sale and purchase, of the Token
is to be governed solely by a separate document setting out the
terms and conditions ("Ts&Cs”) of such agreement. In the event
of any inconsistencies between the Ts&Cs and this whitepaper,

the former shall prevail.

No advice: this whitepaper does not constitute advice to pur-
chase any the Token nor should it be relied upon in connection

with any contract or purchasing decision.

No representations: no representations or warranties have been
made to the recipient or its advisers as to the accuracy or com-
pleteness of the information, statements, opinions or matters (ex-
press or implied) arising out of, contained in or derived from this
whitepaper or any omission from this document or of any other
written or oral information or opinions provided now or in the fu-
ture to any interested party or their advisers. No representation
or warranty is given as to the achievement or reasonableness of
any plans, future projections or prospects and nothing in this doc-
ument is or should be relied upon as a promise or representation
as to the future. To the fullest extent possible, all liability for any
loss or damage of whatsoever kind (whether foreseeable or not)
which may arise from any person acting on any information and

opinions contained in this whitepaper or any information which is

74

made available in connection with any further enquiries, notwith-

standing any negligence, default or lack of care, is disclaimed.

Risk warning: the purchase of the Token carries with it signifi-
cant risks. Potential purchasers should assess the nature of, and
their own appetite for, relevant risks independently and consult

their advisers before making a decision to purchase any the Token.

Translations: this whitepaper and related materials are issued in
English. Any translation is for reference purposes only and is not
certified by any person. If there is any inconsistency between a
translation and the English version of this whitepaper, the English

version prevails.

Restricted transmission: this whitepaper must not be taken or
transmitted to any jurisdiction where distribution or dissemina-

tion of this whitepaper is prohibited or restricted.

No third party affiliation or endorsements: references in this whitepa-
per to specific companies and platforms are for illustrative pur-
poses only. The use of any company and/or platform names and
trademarks does not imply any affiliation with, or endorsement

by, any of those parties.

75

