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Abstract—Hathor is a transactional consensus platform com-
prised of an entirely novel architecture, based on concepts from
both directed acyclic graph (DAG) and blockchain technologies
combined. We propose a solution to the problems of scalability
and decentralization maintenance among distributed ledger net-
works by including a chain of mined blocks inside a DAG of
transactions. The blockchain ensures security when the number
of transactions per second is small, whereas the DAG prevails
when the number increases significantly. The primary result is
that it seems to work correctly under any number of transactions
per second.

Index Terms—scability, dag, blockchain

I. INTRODUCTION

The primary problem for creating digital money is how to
prevent double spending. As the money is digital, and copies
can be made ad nauseam, what can prevent counterfeiting?
What would prevent users from sending copies of the same
money to two (or more) people? That is precisely the problem
solved by Bitcoin and its underlying Blockchain technology.
The current solution behind fiat money is having a single
issuer, a central bank — then trusting the financial institutions
and regulators.

The concept of transferring money using cryptography as
an underlying technology was shortly presented in 1983 by
Chaum [1] and was deepened in a theoretical paper in 1985
[2]. However, it was only in 1988 that Chaum et al. [3]
created the term electronic cash and also proposed a basic
and practical scheme which yielded untraceability yet allowed
to trace double spendings.

According to Barber et al. [4], despite the 30-year literature
on e-cash, most of the proposed schemes requires a central
authority which controls the currency issuance and prevents
double spending [1, 5, 6, 7]. Some papers even propose
solutions in a similar trajectory to Bitcoin, such as hash
chain [8] and preventing double spending using peer-to-peer
networks [9, 10]. The no central point of trust and predictable
money supply together with a clever solution to the double-
spending problem is what separates Bitcoin from the previous
e-cash philosophies.
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Bitcoin (BTC) is a digital currency, also known as digital
money, internet money, and cryptocurrency. It is the first cur-
rency based on cryptography techniques which are distributed,
decentralized, and with no central bank.

Bitcoin is a computer network in which nodes act like
clerks performing clearing. A transaction clearing consists of
ensuring that the transaction is settled according to the rules
of the system. In order to do that, every node stores a copy
of Bitcoin’s ledger, which records both all transactions and
users’ balance. When new transactions are added to the ledger,
the balances are updated. It is said that Bitcoin is distributed
because its ledger is public and is stored in thousands of
computers. Even though the ledger is public, balances are
anonymous, and no one knows who owns which funds1. If an
attacker tries to change anything, the remaining of the network
is able to detect it and ignore the change.

Bitcoin is considered decentralized because there is no au-
thority (or government) who decides its future. Every decision
must be accepted by its community, and no one can enforce
their will. Every change proposal must be submitted to the
community who will discuss the matter and come to a verdict.
If the majority of Bitcoin’s community agrees on a decision,
they just have to update their clearing process accordingly, and
the changes are applied.

The security of Bitcoin relies on digital signature technol-
ogy and network consensus. While digital signature ensures
ownership, i.e., the funds may only be spent by their owners,
and nobody else; the network consensus both prevents double
spending and ensures that all processed transactions have
sufficient funds. In short, every transaction must spend only
unspent funds, must have enough funds available, and must
be signed by its owners, authorizing its execution. Only when
all these requirements are met, the funds are transferred.

Bitcoin provides interesting incentives to all players (users
and miners). On the one hand, users may have incentives to
use Bitcoin because (i) the fees are small and do not depend on
the amount being transferred — but only in the size (in bytes)
of the transaction —; (ii) the transfers will be confirmed in a
well-known period; (iii) it is not possible to revert an already
confirmed transfer, not even with a judicial order; and (iv)

1There are some techniques which may de-anonymize transactions in
specific situations, even when users are using Tor network. For further
information, see ShenTu and Yu [11], Biryukov et al. [12], Jawaheri et al.
[13].



and the currency issuance rate is well-known and preset in
Bitcoin’s rules, which makes Bitcoin’s supply predictable and
trustworthy, different from fiat currencies which depends on
decisions of their central banks — i.e., it would be virtually
impossible to face a hyper inflation in Bitcoin due to currency
issuance. On the other hand, miners have incentive to mine
Bitcoin because new Bitcoins are found every ten minutes,
and they may also collect the fees of unconfirmed transactions.
It is important to highlight that anyone can become a miner,
and there is no entry cost besides the mining equipment. These
incentives have kept the Bitcoin network up and running since
2009 with barely any interruptions (99.99% uptime). For fur-
ther information about incentives, see Ma et al. [14], Catalini
and Gans [15].

Since 2009, Bitcoin has been growing and becoming more
and more used all around the world. It started as an experiment
based on a seminal work by Nakamoto [16] and expanded
to the most important and successful cryptocurrency with a
highly volatile $192 billion market capitalization, as of this
writing [17]. There are hundreds of companies investing in
different uses of the technology, from exchanges to debit cards,
and billions of dollars being invested in the new markets based
on Bitcoin’s technology.

Despite Bitcoin’s huge success, there are still many chal-
lenges to be overcome. We will focus on the following chal-
lenges: scaling, spamming, and centralization. One important
challenge that we will skip is to reduce the size of the ledger
(or blockchain), which today is around 125GB and is growing
at a rate of 4.5GB per month [18].

The network must scale to support hundreds of transactions
per second, while its capacity is around only eight transactions
per second. Thus, the more Bitcoin becomes popular, the
more saturated the network is. Network saturation has many
side effects and may affect the players’ incentive to keep the
network running. The transaction fees have to be increased
to compete for faster confirmation. The pool of unconfirmed
transactions grows indefinitely, which may cause some trans-
actions to be discarded due to low memory space available,
as the previously predictable confirmation time of transactions
becomes unpredictable.

The scaling problem is not precisely an issue of Bitcoin,
but an issue of the Blockchain technology. Hence, all other
Blockchain-based cryptocurrencies have the same limitations,
such as Litecoin, Bitcoin Cash, and Ethereum. One may argue
that increasing the maximum block size is a feasible solution
to scaling, but I would say that it is just a temporary solution
which buys some time until the next network saturation. Even
allowing any block size would not be feasible because of spam
attacks and bandwidth requirements.

Bitcoin seems to have the most decentralized network
among the cryptocurrencies, even so, there are few miners and
mining pools which together control over 50% of the network’s
computing (hash)power (for details, see Gencer et al. [19]).
Hence, they have an oversized influence when it comes to
changes in the Bitcoin protocol’s behavior. They may also
cooperate in an attack, voiding transactions which seemed

confirmed. The more decentralized, the more trustworthy
Bitcoin is. This centralization problem is seen as an important
challenge to overcome.

Generating new transactions in Bitcoin has a tiny compu-
tational cost because one only has to generate the transaction
itself, digitally sign it, and propagate it in the Bitcoin network.
On the one hand, it means that any device is capable of
generating new transactions, but, on the other hand, it makes
Bitcoin susceptible to spam attacks. One may generate hun-
dreds of thousands of new valid transactions, overloading the
unconfirmed transactions pool and saturating the network. This
spam problem has happened several times and affects Bitcoin’s
trustworthy. Parker [20] reports a possible spam attack lasting
at least contiguous 18 months.

After the launch of Bitcoin, more than 1,000 other cryp-
tocurrencies have been created [21]. In general, they are
Bitcoin-like, which means they use similar technologies, in-
cluding the blockchain. Some cryptocurrencies differs a lot
from Bitcoin, like the ones which use the Directed Acyclic
Graph (DAG) model [22, 23, 24, 25, 26, 27]. We are especially
interested in one of them: the Directed Acyclic Graph (DAG),
which the most notorious implementation is Iota.

Iota uses a DAG model, called tangle, which has a different
design than Bitcoin’s blockchain. It has neither mining nor
confirmation blocks and transaction fees. Each transaction has
its own proof-of-work2 and is used to confirm other transac-
tions, forming a directed acyclic graph of transactions. Thus,
a transaction is said to be confirmed when there is enough
proof-of-work from the transactions confirming it directly or
indirectly. There is no other way to confirm transactions but
generating new transactions.

In Iota, as transactions confirm transactions, the network
benefits from a high volume of new transactions. Therefore,
theoretically, it scales to any large number of transactions per
second. The scaling problem of tangle is exactly the opposite
of Bitcoin’s: it must have at least a given number of transaction
per seconds; otherwise, the transactions are not confirmed, and
the cryptocurrency does not work. While Iota’s network has
not reached this minimum number of transactions per second,
it uses a central coordinator which works as a trustworthy
node that stamps which transactions are valid and which are
not [28].

Every transaction confirmed by the central coordinator is
assumed to be valid and cannot be reverted. The remaining
of the network can verify a confirmation through the central
coordinator’s digital signature. It is claimed that the coor-
dinator will not be necessary anymore when the number of
transactions per second reaches a minimum value, but Iota’s
developers cannot say precisely what is this minimum value.
The presence of a coordinator just elucidates that the tangle
does not seem to work properly under a low volume of
transactions (and fluctuations in the number of transactions
per second may severely affect Iota’s trustworthiness).

2The mechanism that assures the immutability is the proof-of-work, which
makes it computationally infeasible to tamper with transactions. It will be
explained later in details.



The present work intends to propose and analyze a new ar-
chitecture, named Hathor, which lies between Bitcoin and Iota
and may be a viable solution to both scaling, centralization,
and spam problems.

II. HATHOR’S ARCHITECTURE

This work introduces Hathor’s architecture, which may be
a solution to scaling, centralization, and spam issues on the
Blockchain architecture. Hathor has both transactions and
blocks connected forming a Directed Acyclic Graph (DAG).
While transactions are only connected to other transactions,
blocks are connected to both blocks and transactions forming
a Blockchain inside the DAG. In Figure 1, the blocks are
represented by red boxes, while transactions are represented by
ovals. Both transactions and blocks have to solve a proof-of-
work according to their weight. Blocks and transactions will
generically be referred as vertices in this paper.

b2b1

tx3

tx4

b3

tx5

tx6tx2

tx1

Fig. 1: Blocks are represented by red boxes, while transactions
are represented by ovals.

The weight of blocks and transactions is the difficulty of
mining them, i.e., the higher the weight, the harder it is to
solve the proof-of-work. Let wA be the weight of a vertex A,
let the random variable XA be the number of trials to solve
the proof-of-work of this vertex, and E[XA] be the average
number of trials to solve the proof-of-work. Then,

wA = log2 E[XA]

Blocks and transactions are connected to their parents,
which form a directed acyclic graph called the DAG of
verifications. When A is a parent of B, we say that B verifies
A, in other words, B checks that A is a valid vertex. As A is
also verifying its parents, we may use a recursive argument and
say that B is verifying the whole subDAG behind its parents.

Blocks and transactions are also connected to their inputs,
which form another directed acyclic graph called the DAG of
funds. When A has an input pointing to an output of B, we
say that A is spending an output of B, or simply A spends B.
As blocks do not have inputs, they are dead-ends in the DAG
of funds, i.e., if one chooses an arbitrary transaction and walks
backwards through the DAG of funds, one will always ends
in a block.

The genesis is the initial state of the DAG, and the state
changes every new block or transaction connected to the
DAG. This new vertex is valid when (i) its parents already

exist and are valid as well, (ii) its timestamp is greater than
their parents’, and (iii) their funds are valid. The validity of
the funds depends on the rules of the network and will be
discussed later.

In Hathor, there are two difficulty levels: (i) one for new
transactions which are just moving tokens around, and (ii)
another one for “blocks” which are generating new tokens.
The first may be adjusted to prevent spammers, which would
spend too many resources to generate a great number of new
transactions, whereas the latter is adjusted to keep the pace of
new blocks constant.

Both Hathor’s miners and users solve proof-of-works, de-
centralizing even more the network’s hash rate. Even though
the users’ difficulty is less than the miners’, the network’s
total hash rate will increase every new transaction. The more
transactions arrive, the higher the total hash rate.

In a low load scenario, there is a small number of new
transactions coming into the network, which means they
give a minor contribution to confirmations. In this case, the
confirmation is held mostly by blocks. On the other hand,
in the high load scenarios, there is a large number of new
transactions giving a major contribution to confirmations. In
this case, the blocks strengthen the confirmations, but many
of them will have already been confirmed before the next
blocks are found. The higher the number of new transactions,
the faster the transactions are confirmed. The blocks assure a
“maximum confirmation time”.

The incentive scheme which keeps the network running is
the same as Bitcoin’s. Miners go towards newly generate coins,
whereas users just want to exchange their tokens. When there
is no new transaction to be confirmed, the miners keep the
network up and running while they find new blocks.

A. Transactions

There is a trade-off in the difficulty of mining new trans-
actions. On the one hand, the higher the weight, the harder
it is to generate new transactions, preventing spammers and
increasing the confirmation of previous vertices. But, on the
other hand, it is worse for microtransactions, and it is harder
and slower for IoT and mobile devices to generate new
transactions. An alternative is that IoT and mobile devices may
only sign their transactions and send them to another device
that will solve their proof-of-work and propagate it into the
network. In the future, the weight of transactions may even
be dynamic, increasing when a spam attack is in course and
reducing when it is gone.

A transaction’s weight depends only on the transaction’s
size (in bytes) and on the total amount being moved. The
idea here is to allow small amounts to be easily moved, while
big amounts will take longer to the moved. This allows mi-
crotransaction to quickly get into the network. Regarding the
transaction’s size, requiring more work for larger transactions
makes sense because it prevents abuses, such as a denial-of-
service attack using enormous transactions and consuming a
lot of bandwidth and disk space.



B. Conflicting transactions

When two or more transactions spend the same output, we
say they are conflicting transactions. In this case, at most one
of them will be executed while all others will be voided. The
executed transaction is the one with the highest accumulated
weight, i.e., the one most verified by other transactions. In
case of tie, all conflicting transactions will be voided. It is
easier to notice that all conflicting transactions have the same
outgoing neighbors in the DAG of funds.

When two transactions have exactly the same inputs and
outputs, but different hashes, we say they are twin transactions.
This is a special case of conflicting transactions because the
funds are going from the same origins to the same destinations.
All conflicting transactions but twin transactions are double
spending attempts.

Every transaction has an accumulated weight, which is the
amount of work that is verifying it. Let A be a transaction,
wA be the weight of A, and aA be the accumulated weight of
A. Let V be any vertex in the DAG such that there is a path
from V to A, and wV be the weight of V . Then,

aA = log2

(
2wA +

∑
V A

2wV

)

When two or more transactions are in conflict, i.e., they all
spend the same output, at most one of them will be executed,
while all other will be voided. We say that the winner of a
transaction is the transaction that has the highest accumulated
weight. If there are more than one transaction with the highest
accumulated weight, they are all voided.

C. Block

A block is like a regular transaction with no inputs which
confirms exactly one previous block and at least two transac-
tions. There may be any number of outputs provided that they
sum up to the number of newly generated tokens. The blocks
are ordered according to their timestamp.

Every block has a score, which is the amount of work that
is verified by it. Let B be a block, wB be the weight of B,
and sB be the score of B. Let V be any vertex in the DAG
such that there is a path from B to V , and wV be the weight
of V . Then,

sB = log2

(
2wB +

∑
B V

2wV

)

As blocks must have one, and only one, block as a parent,
they form one or more blockchains inside the DAG of verifica-
tions. The blockchain with the highest score is called the best
blockchain, which is the one that contains the highest work
behind it. All blocks outside the best blockchain are voided,
which means that all transactions spending their outputs are
voided as well. In other words, only transactions spending
outputs of blocks in the best blockchain may be executed.

D. Transaction confirmation

Transactions are classified into three groups: (i) confirmed
transactions, (ii) in-progress transactions, and (iii) unverified
transactions. The confirmed transactions are the ones which
have already been settled, i.e., their accumulated weights have
reached a minimum level. The unverified transactions are the
brand new transactions which have not been verified even once
yet, i.e., their accumulated weights equal their weights. The in-
progress transactions are in the middle between confirmed and
unverified transactions, i.e., they have already been verified a
few times, but not enough to reach the minimum level required
to be a confirmed transaction. For simplicity, the pending
transactions encompass both in-progress and unverified trans-
actions.

In Bitcoin, it is well-accepted that one should wait at
least “six confirmations” before accepting a transaction, which
means that at least six blocks in the best blockchain must
confirm the transaction. This Bitcoin’s criteria is based on
some results presented in Satoshi’s seminal work [16] and
derived here in more detail in Appendix VIII. Adopting six
confirmations is the same as saying that the probability of a
successful attack is less than 0.1%.

Therefore, in order to have the same level of security
as Bitcoin, a transaction is said to be confirmed when the
probability of a successful attack is less than 0.1%. This
probability depends only on the network hash rate and on the
accumulated weight of the transaction. Thus, a transaction A
is confirmed when:

aA ≥ log2(6 ·∆t ·H)

Where aA is the accumulated weight of A, ∆t is the average
time between blocks, and H is the network hash rate.

E. Transaction validation

A transaction will be considered valid when it complies with
the following rules: (i) it spends only unspent outputs; (ii) the
sum of the inputs is greater than or equal to the sum of the
outputs; (iii) it confirms at least two pending transactions; and
(iv) it solves the proof-of-work with a valid weight.

Each transaction has a timestamp field which is used to
record when it was generated. This timestamp field must be
in UTC time to prevent timezone issues.

The digital signature is used to ensure that only the owners
may spend their tokens. It will be calculated signing the
transaction’s input and output only. This allows the transaction
to be signed in one device and to be sent to another device
that will choose which transaction will be confirmed and will
solve the proof-of-work.

Services of solving proof-of-work may also be offered by
companies. They give their customers a wallet address and
they send the payment inside of the transaction itself. This
allows IoT devices to save energy, delegating the task of
solving the proof-of-work.

In case of transaction conflict, in which two transactions try
to spend the same tokens, the one with higher accumulated



weight is chosen and the other is invalidated. Although it is
not a possible policy in Iota because of the submarine attack,
Hathor does not have the same problem. In Hathor, like in
Bitcoin, the submarine attack is only possible if the attacker
has a hash rate higher than the whole network, including the
miners. In other words, when analysing the double spending
attack, Hathor is as safe as Bitcoin.

F. Orphan blocks

Differently from Bitcoin, orphan blocks are rare in Hathor.
As blocks are just simple vertices in the DAG, they are light
and are quickly propagated through the network. This reduces
significantly the probability of orphan blocks.

G. Governance

In general, cryptocurrencies are decentralized, which means
there is no central authority who decides its future, i.e., no
one can enforce their will. Every decision must be accepted
by its community, which means the community must agree.
But what happens if they do not agree? When a consensus is
not reached, the rules remain the same and the cryptocurrency
may stall. The lack of a central authority may generate long
debates, split the community, slow down strategic decision-
making, and, ultimately, come to a “civil war”—it is precisely
what happened between Bitcoin Core (BTC) and Bitcoin Cash
(BCH) in 2017 [30, 31].

Governance is an important part of a cryptocurrency because
it must evolve, which means its community must agree into
changing the rules. Governance is an agreement of how the
community will proceed to change the rules.

Despite the large literature available about governance, what
separates Blockchain-based cryptocurrencies from them is the
decentralization (against the hierarchical model). The number
of papers about governance in decentralized cryptocurrencies
has been growing, but it still lacks a solution. Hacker [32]
resorts to the theory of complex systems and proposes a gov-
ernance framework for decentralized cryptocurrencies, which
is, in summary, a centralized coordination entity. Hsieh et al.
[33] has analyzed the effects of governance in returns using
panel data on several cryptocurrencies. They present a deeper
discussion about the parts of a governance mechanism and
concludes that

“... on the one hand, investors value cryptocur-
rencies’ core value proposition, rooted in decen-
tralization; but on the other hand, are suspicious
of decentralized governance at higher levels in the
organization because they could slow down strategic
decision-making (e.g., regarding the introduction of
new innovations) or create information asymmetries
between investors and technologists.”

I believe that the solution to a good governance will come
from financial incentives to all players to find a common
ground. In Bitcoin, users have less bargaining power than
miners because they do not contribute with work, whereas,
in Hathor, both miners and users are working together. So,
when it comes to changing the rules, the bargaining power is

more distributed than in Bitcoin. The distribution depends on
the ratio of the miners’ hashpower and the users’ hashpower.
The higher the ratio, the closer to Bitcoin’s governance. The
lower the ratio, the higher the bargaining power of the users.

III. CONSENSUS & SYNCHRONIZATION

A critical part of Hathor is its consensus and synchroniza-
tion algorithms. The synchronization algorithm’s goal is to
keep all nodes in the peer-to-peer network synchronized. Two
nodes are synced if, and only if, they have precisely the same
set of blocks and transactions. The consensus algorithm’s goal
is to make all peers in the network agree on which blocks and
transactions are executed and which are voided.

In this section, we are going to describe the algorithms that
keep the peers in the network synced and in agreement.

LIST OF SYMBOLS

Vt set of transactions
Vb set of blocks
V V = Vt∪Vb, i.e., set of all blocks and transactions
Z Z ⊆ V is the set of voided transactions
Zv set of blocks or transactions that voids v ∈ V
Ev Ev = {(vi, vj) | vi verifies vj}, i.e., edges of

verification
Ef Ef = {(vi, vj) | vi spends an output of vj}, i.e.,

edges of funds
E E = Ef ∪Ev , i.e., edges of funds and verification
Gf Gf = (V,Ef ), i.e., DAG of funds
Gv Gv = (V,Ev), i.e., DAG of verifications
G G = Gf∪Gv , i.e., complete DAG with both funds

and verifications
B B = {b ∈ Vb | @x ∈ Vb , (x, b) ∈ E}, i.e., the

head of the blockchains
wv weight of a block or transaction v ∈ V
av accumulated weight of a transaction v ∈ Vt
sb score of a block b ∈ Vb
tv timestamp of a block or transaction v ∈ V
π(b) parent of block b ∈ Vb in the blockchain

IV. CONSENSUS ALGORITHM

The consensus algorithm’s goal is to make all peers agree
on which blocks and transactions are executed and which are
voided. Since the synchronization algorithm is continuously
running, we need to guarantee that peers will agree assuming
they have the same DAG, i.e., G1 = G2. This way, the peers
will eventually get synced and in agreement.

A. Conflicting transactions

Every transaction has inputs and outputs. The inputs point to
other transaction’s outputs, and we say that they are spending
those outputs. We also say that a transaction is spending other
transaction’s funds when there is at least one input point to
another transaction’s output. We say that a transaction is in
conflict with another transaction when they are both trying to
spend the same output. Conflicts may have different topologies
because transactions may conflict in different ways.



In Figure 2a, we can see the simplest conflict: both tx2
and tx3 are trying to spend output 0 of tx1. In this case,
the one with highest accumulated weight will be executed,
while the other will be voided. In case of a tie, both will be
voided. Figure 2b has a similar situation, but there is one more
transaction (tx4) trying to spend output 0 of tx1. The conflict
resolution in this case is the same: only the transaction with
highest accumulated weight will be executed, and the others
will be voided.

tx3

tx1
0

tx2
0

(a)

tx3

tx1

0

tx20

tx4

0

(b)

Fig. 2: In both examples, all transactions are trying to spend
the output 0 of tx1, so, only one of them will be executed,
while the others will be voided.

In Figure 3, tx4 has two groups of conflicts. It has a conflict
with tx3 because both are trying to spend the output 0 of tx1,
while it also has a conflict with tx5 because both are trying to
spend the output 1 of tx2. Even though tx3 and tx5 are not in
conflict between themselves, they will be both voided if tx4
is executed. If tx4 is voided, they are independent.

tx3

tx1
0

tx4
0

tx2

1

tx51

Fig. 3: tx4 has multiple conflicts. It conflicts with tx3 because
of output 0 of tx1, and it also conflicts with tx5 because of
output 1 of tx2. In this case, either tx4 is voided, or both tx3
and tx5 are voided.

The case presented in Figure 4 is more complex. While tx4
has conflicts with tx3 and tx5, there are two other transactions
(tx6 and tx7) that depends on them. The situation of tx6 and
tx7 are different because tx6 may be executed but tx7 may
not. Since tx7 would only be executed when both tx4 and
tx5 are executed, and tx4 and tx5 are in conflict, tx7 will
always be a voided transaction. There are only three possible
outcomes to the conflict resolution of Figure 4: (i) tx3, tx4,
tx5, tx6, and tx7 are voided because tx3, tx4, and tx5 have the
same accumulated weight; (ii) tx4 has the highest accumulated
weight, so it is executed, and tx3, tx5, tx6, and tx7 are voided;
or (iii) tx4 does not have the highest accumulated weight, so
it is voided, and tx3, tx5, and tx6 are executed; but tx7 is also
voided because it verifies tx4.

tx3

tx1
0

tx4

0

tx2
1

tx51

tx6
0

0

tx7
0

1

Fig. 4: tx4 has multiple conflicts, while tx6 and tx7 depends
on the conflict resolution of tx3, tx4, and tx5. In this case, tx7
will always be voided, and tx6 will only be executed if tx4 is
voided and both tx3 and tx5 are executed.

There are other interesting cases, such as in Figure 5, where
tx3 is in conflict with tx2 while it is trying to spend an output
of tx2. The conflict resolution in this case is simple because
tx3 will always be voided. So, tx2 does not have a conflict in
fact and is executed.

tx3tx1
0

tx2
00

Fig. 5: tx3 is in conflict with tx2 because both are trying to
spend output 0 of tx1. But, at the same time, tx3 tries to spend
an output of tx2. In this case, tx2 will be executed, while tx3
will be voided.

B. Blockchain and the best chain

Besides transactions, the DAG also have blocks that make
blockchains. A blockchain is a sequence of blocks such that
each block verifies its previous block. Every blockchain can be
uniquely identified by its head, i.e., the right-most block of the
blockchain. In fact, every block is the head of a blockchain.
In Figure 6, we can see several blockchains, for instance (i)
blockchain [b5] = (b1, b2, b3, b4, b5), (ii) blockchain [b6]
= (b1, b2, b6), (iii) blockchain [b4] = (b1, b2, b3, b4), and
so on. Different blockchains always have at least one block
in common—in this case, [b5] ∩ [b6] = (b1, b2). Notice that
[b5] is the best blockchain, which means all blocks not in [b5]
are voided; in this case, only b6.

b2b1

b3 b4 b5

b6

Fig. 6: Simple blockchain in which each block verifies its
previous block.

In Figure 7, the blockchains [b6] and [b11] are candidates
for the best blockchain. The next block will define which one
will be the best blockchain. While a new block has not been
found, [b2] is the temporary best blockchain. All miners are
supposed to be mining from blocks b6 and b11.
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Fig. 7: Blockchains [b6] and [b11] are candidates for the best
blockchain.

In fact, the criteria to choose the best blockchain is not the
longest chain, but the one with highest score. The score of a
blockchain is a measure of the work that is being verified by
the head of the blockchain.

The score of the block is also affected by the transactions
that are being verified, so, miners have the incentive to choose
the most recent transactions instead of old ones. In Figure 8,
[b6]’s score is higher than [b7]’s because the former directly
verifies both tx7 and tx8 while the latter verifies tx7 and tx5.

Let sb6 and sb7 be the scores of b6 and b7, respectivelly,
and wx be the score of x ∈ V . Then,

sb6 = wb6 +

5∑
i=1

wbi +

8∑
i=1

wtxi

sb7 = wb7 +

5∑
i=1

wbi +

7∑
i=1

wtxi

Thus, assuming that wb6 = wb7, we have sb6−sb7 = wtx8 ⇒
sb6 > sb7.
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b6

tx7

tx8
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Fig. 8: [b6] is the best blockchain because its score is higher
than the score of [b7].

1) Dilemma: Who wins?: In Figure 9a, tx2 and tx3 are
conflicting transactions, and wtx3 > wtx2. So, sb5 > sb4,
which means [b5] would be the best blockchain. But, because
of the many transactions verifying tx2, atx2 > atx3, which
means tx2 will be executed and tx3 will be voided. It is a
dilemma. On the one side, the best blockchain should be [b5].
But, on the other side, tx2 should be executed and tx3 should
be voided.

Which criteria will prevail? Either the score of the
blockchain or the accumulated weight of the transactions? In
this case, we say that the work done by b5 will be beaten by
the work done by the "many other transactions". So, in the
right outcome, tx3 and b5 are voided, while tx4 is executed
and [b4] is the best blockchain. It is shown in Figure 9b.

This dilemma shows that it does not matter where the work
comes from. It may come both from blocks and transactions,
and no one is more important than the other. It is the same
principle used by Blockchain-based architectures: the chain
with the highest work prevails.

b2b1 b3

b4

tx2

b5

tx3

tx1
many other transactions

(a)

b2b1 b3

b4

tx2

b5

tx3

tx1
many other transactions

(b)

Fig. 9: tx2 and tx3 are conflicting transactions, and wtx3 >
wtx2, which implies that sb5 > sb4. But, because of the main
transactions verifying tx2, atx2 > atx3. The dilemma is that,
on the one hand, [b5] should be the best blockchain, but, on
the other hand, tx3 should be voided. The solution in this case
is presented in 9b, where tx3 is voided and [b4] is the best
blockchain.

C. Consensus definition

Let G = (V,E) be a DAG of blocks and transactions.
Let Zv ⊆ P(V ) be the set of blocks and transactions that
voids v ∈ V . Let Z ⊆ V be the set of voided blocks and
transactions, i.e., Z = {x ∈ V | Zx 6= ∅}.

A consensus is formally a function f : v 7→ Zv that maps
a block or transaction to the set of blocks and transactions
that voids it. Notice that both the accumulated weights and
the scores are invariant with the consensus. We say that a
consensus is valid if, and only if, it satisfies all of the following
rules:

General rules
(i) If x ∈ V is voided, then all its descendants are voided

as well, i.e., x ∈ Z, y  x⇒ y ∈ Z ∧ Zx ⊆ Zy .
(ii) If x ∈ V is executed, than all its ancestors are executed

as well, i.e., x /∈ Z, x y ⇒ y /∈ Z.
(iii) Blocks or transactions may only void their descendants,

i.e., let Zx 6= ∅, then ∀ y 6= x ∈ Zx , x y.
Blockchain rules

(iv) The head of the best blockchain has the highest score
among all blocks that are not voided by an ancestor, i.e.,
[b∗] is the best blockchain ⇔ {b∗} = {b ∈ Vb | sb ≥
sb∗ ∧ Zb − {b} = ∅}.



(v) All blocks in the best blockchain are executed, and all
blocks out of the best blockchain are voided, i.e., let b
be a block, then b ∈ [b∗]⇔ Zb = ∅.

(vi) All blocks out of the best blockchain voids themselves,
i.e., let b be a block and [b∗] be the best blockchain, then
b /∈ [b∗]⇔ b ∈ Zb.
Transaction rules

(vii) v is a transaction with no conflicts ⇒ v /∈ Zv .
(viii) The winner transaction of a conflict has the highest

accumulated weight among all conflicting transactions
that are not voided by an ancestor. In case of a tie,
they will all be voided. Let C = {v0, v1, . . . , vn} be
conflicting transactions, then vk /∈ Zvk ⇔ {vk} = {x ∈
C | ax ≥ avk ∧ Zx − {x} = ∅}.

(ix) Only one transaction of a conflict may be non-voided,
i.e., let {v0, v1, . . . , vn} be transactions in conflict, then
vk /∈ Zvk ⇒ vi ∈ Zvi , ∀ i 6= k.

We conjecture that there is one, and only one, consensus
that is valid, i.e., if f and g are valid consensus, then f = g.

1) Analysis of the dilemma: Let’s use the rules to analyse
possible consensus for the dilemma of Figure 9a.

Let f1(v) = ∅ be a consensus, i.e., all blocks and transac-
tions are executed. It is clearly invalid because several rules
would be violated. From rule (iv), we know that [b5] is the best
blockchain. A first violation is that, from rule (vi), b4 must
be voided but it is not. A second violation is that, from rule
(ix), either tx2 or tx3 must be voided, but both are executed.

V. SYNCHRONIZATION ALGORITHM

The primary goal of the synchronization algorithm is to let
all peers in the peer-to-peer network have the same blocks and
transactions. The assumptions is that anyone may join or leave
the network at their discretion. In the network, each connection
has exactly two peers who can exchange messages in both
ways. It is assumed that the messages are reliable, ordered,
error-checked, and cannot be tampered with. In practice, the
messages are exchanged using a Transport Layer Security
Security (TLS) protocol.

Another assumptions is that a new block or transaction may
arrive at any time. These new blocks and transactions may
have any timestamp, including old ones. This may happen
during the merge of a split brain, for instance.

To establish a connection, one of the peers must try to
connect to another peer. The peer that opens the connection is
called a client, while the other peer is called a server. In the
peer-to-peer network, there are two types of peers: (i) the ones
that can be both clients and servers, (ii) and the ones that can
only be clients. It is important because two client-only peers
cannot communicate unless they both connect to a third-party
proxy.

A. Split brain

A split brain in a peer-to-peer network occurs when the
peers are partitioned in two or more parts such that the parts
cannot communicate between them, in other words, each part
will be by itself, without receiving new blocks and transactions

from the other parts. The split brain can last any longer, from
minutes to days. The challenge is to merge the DAGs after the
network has recovered and the parts can communicate again.
This is a critical problem for every distributed system, and we
need to be clear about how we want to deal with this cases.

When a split brain occurs, each part will share a common
past (the DAG before the split brain) and will start their own
future (the new blocks and transactions arriving during the
split brain). So, after the end of the split brain, the merging
process will have to deal with many blockchains and maybe
conflicting transactions.

A submarine attack is similar to a split brain, because
attackers mine their own blocks and transactions separately,
and then they propagate their blocks and transactions to the
network in the right moment. It is like a planned split brain.

The synchronization algorithm is the easiest part. It has to
copy the new blocks and transactions between all peers as
fast as possible. Then, the consensus algorithm must decide
which blocks and transactions are executed and which are
voided. As multiple blockchains will exist, probably many
blocks will be voided, and this voidance will be propagated
to all transactions spending these blocks’ outputs and their
descendants. All voided transactions that are not conflicting
transactions may be recovered, i.e., reconnected to non-voided
parents and sent again to the network.

We may reduce this problem rejecting all blocks and
transactions with timestamp smaller than a threshold. This is
similar to a checkpoint, where some reorgs are prohibited in
the protocol level. This approach would create hard forks when
split brains occur for a long time, would allow some attack
vectors against new peers joining the network, and would make
the consensus algorithm be path dependent, i.e., it would not
be enough to download the transactions in topological order,
since the order the transactions are downloaded would impact
on the final consensus. This is why such rule does not exists
in Hathor.

I don’t think there is a simple way to detect whether a split
brain was caused intentionally by an attacker or not. We can
say that a split brain without conflicting transactions between
the parts is a sign of a non-intentional split brain.

B. Solution

Let tv be the timestamp of v ∈ V . As the timestamp must
be strictly increasing, (a, b) ∈ E ⇒ ta > tb. Hence, any
sequence (v0, v1, . . . , vn, . . . ) such that tvi ≤ tvj ∀ i < j is a
topological sorting, i.e., if a peer download the transactions in
this order, all transactions’ parents and inputs will have already
been downloaded before it.

Let Hx ⊆ G be the subDAG of descendants of x ∈ V , i.e.,
vi ∈ Hx ⇔ vi  x.

Definition 1. Unverified transactions are the transactions
which have not been verified yet, i.e., vi is an unverified
transaction when @ vj | (vj , vi) ∈ Et.

Lemma 1. v ∈ G ∧ v  x⇒ x ∈ G



Proof. Suppose x /∈ G. Since v  x, take any path from v to
x, namely (v, a1, . . . , ak, x). From this path, x is a parent of
ak. As x /∈ G, ak would be invalid, therefore the whole path
would be invalid, including v0, which is a contradiction.

Theorem 2. Let G1 ⊆ G and G2 ⊆ G be two subDAGs of G,
and U1 ⊆ V1 and U2 ⊆ V2 be their unverified transactions,
respectively. Then, G1 = G2 ⇔ U1 = U2.

Proof. (⇒) Suppose U1 6= U2. Then, ∃u ∈ U1 ∧ u /∈ U2,
which implies either (u /∈ V2) or (u ∈ V2 − U2). If u /∈ V2,
then u /∈ V2 ⇒ u /∈ V1 ⇒ u /∈ U1, which is a contradiction.
If u ∈ V2 − U2, it means that ∃x ∈ G2 such that (x, u) ∈
E2. But, u ∈ U1 ⇒ (x, u) /∈ E1 ⇒ (x, u) /∈ E2, which
is a contradiction as well. The case of u /∈ U1 ∧ u ∈ U2 is
analogous.

(⇐) Suppose G1 6= G2. Then, ∃x ∈ G1 ∧ x /∈ G2. Hence,
there must exists a path from u ∈ U1 = U2 such that u x.
But, from Lemma 1, u ∈ U2 ∧ u x⇒ x ∈ G2, which is a
contradiction. The case of x /∈ G1∧x ∈ G2 is analogous.

The above theorem is the base of the synchronization
algorithm. It says that two DAGs are exactly the same if, and
only if, their unverified transactions are equal. This means that
it is enough to compare the unverified transactions of two peers
to know whether they are synced or not.

But, as new transactions and blocks arrive, the DAG G
changes over time. Let G(t) ∈ G be the subDAG at time t, i.e.,
it contains only the blocks and transactions with timestamp
smaller than or equal to t, i.e., V (t) = {x ∈ V | tx ≤ t} and
E(t) = {(x, y) ∈ E | tx ≤ t ∧ ty ≤ t}. It is easy to notice
that G(t0) ⊆ G(t1) for t0 ≤ t1, since V0(t0) = {vi | ti ≤ t0}
is a subset of V1(t1) = {vi | ti ≤ t1}.

Theorem 3. Let G1(t) and G2(t) be DAGs of two peers. Then,
G1(t) = G2(t)⇒ G1(i) = G2(i)∀ i ≤ t.

Proof. Since i ≤ t, we have G1(i) ⊆ G1(t) and G2(i) ⊆
G2(t). Thus, G1(t) = G2(t) implies V1(t) = V2(t), which
implies V1(i) = V2(i), which implies G1(i) = G2(i).

Theorem 4. Let G1(t) and G2(t) be DAGs of two peers. Then,
G1(t) 6= G2(t)⇒ G1(i) 6= G2(i)∀ i > t.

Proof. Suppose G1(i) = G2(i). Since t < i, G1(t) ⊆ G1(i)
and G2(t) ⊆ G2(i). From Theorem 3, we would have G1(t) =
G2(t), which is a contradiction.

Theorems 3 and 4 allows us to run an exponential search
followed by a binary search to find the largest t∗ such that
both peers are synced, i.e., G1(t∗) = G2(t∗) and G1(i) 6=
G2(i)∀ i > t∗. In each step of the search, the peers check
whether their unverified transactions are equal or not, which
is sufficient due to Theorem 2.

After t∗ has been found, the peers download the transactions
with timestamp greater than t∗ ordered by their timestamp. The
download algorithm request the transactions, and checks the
unverified transactions every new timestamp. If the unverified
transactions of the peers are the same, both restarts the search
for a new t∗.

C. Synchronizing in a dynamic DAG

The presented algorithm works for any static DAG G. After
a finite number of messages, the peers are always synced. But
how does it behave when a new block or transaction x arrives?
In this case, x will be unverified regardless of its timestamp.
Thus, x ∈ U(t) , ∀ t ≥ tx. In this case, it will eventually be
download after a search algorithm execution.

But, to quickly process a high number of transactions per
second, the peers must synchronize in near real-time, which
means we cannot just wait for the next search. Thus, when a
peer receives x for the first time, it adds x to its DAG and
propagates x to its neighbors.

1) Receiving old transactions: When an old transaction x
arrive, it is unverified transactions and will be sent immediately
to all synced peers. The syncing peers will find x when t > tx
in the synchronization algorithm.

2) Propagation policies: The propagation policy is an
algorithm that decides to which neighbors a new block or
transaction will be send to. The flood algorithm is the simplest
propagation policy and just send x to all neighbors. On one
hand, it consumes more bandwidth, but, on the other hand, it
is robust against sybil attacks.

Peers must prioritize blocks over transactions, which means
they should propagate blocks as soon as possible, even if there
are some transactions waiting in the queue.

We can simplify and say that a peer has two types of
neighbor: synced and syncing. An optimized version of the
flood algorithm is to send x to all peers that are either (i)
synced or (ii) syncing with tx < t∗. Another optimization is
that a peer should never propagate x when it has requested to
download x, because x has already been propagated.

Let tmax = maxv∈V tv be the maximum timestamp of all
blocks and transactions known by a peer. This peer classifies
a neighbor as synced when tmax − t∗ ≤ L. The L threshold
is important because, in a network propagating a high number
of transactions per second from different places, two high-
latency neighbors will be sending new transactions among
them, which means they will never be totally synced. This
analysis is not taking into account the blocks because there
will be one block per minute, on average.

Let’s say two peers have latency d (seconds) between
messages with bandwidth B (bits/second). Let r be the number
of transactions per second generated by one of them, while the
other is not generating any transaction. Let s be the average
size (bytes) of a transaction sent through the network. Suppose
that new transactions are immediately sent to the other peer.
Then, if 8 · s · r ≥ B for more than L seconds, peers will not
be synced anymore. Hence, rmax = B/(8 ·s) is the maximum
number of transactions per seconds a peer can countinuously
withstand.

The size of the transactions depends on both the type of
transaction and its number of inputs and outputs. A typical
P2PKH transaction, with one input and two outputs, has
around 300 bytes. Thus, let’s add a network overhead and
consider s = 512 bytes. In this case, a peer with bandwidth



of 1Mbps (B = 220) would be able to receive 256 tps
(rmax = 256).

Let n be the number of new transactions in a window of
L seconds. Then, if the time interval between transactions
follows an exponential distribution, we have that n follows a
Poisson distribution with parameter λ = r ·L, i.e, P (n = k) =

e−λ λ
k

k! . Let nmax = rmax ·L = B·L
8·s . Thus, the probability of

a peer gets out-of-sync is:

P (n > nmax) = 1−
bnmaxc∑
k=0

P (n = k)

When λ > 1000, we may approximate the Poisson distribu-
tion by the Normal distribution with µ = λ and σ2 = λ. Let
Φ be the standard normal distribution, then:

P (n > nmax) = 1− Φ

(
nmax − λ√

λ

)
= 1− Φ

(√
L

r
· (rmax − r)

)
It is interesting that increasing L reduces the probability

of P (n > nmax) when r < rmax. But it also increases the
probability when r > rmax. Generally speaking, if r > rmax
for more than L seconds, peers will get out-of-sync. Notice
that rmax is a parameter of the peer, so, it will happen only
for those which r > rmax.

3) Mining criteria: A full node is considered sync’ed and
is able to mine new blocks when it is sync’ed with at least
one peer.

D. Algorithm to compare U1(t) and U2(t)

As U(t) is the set of unverified transaction at time t, we
need an efficient algorithm to find them.

Theorem 5. Let x be a transaction and V xf = {y | (y, x) ∈
E} be the set of transactions that directly verifies x in the
DAG of verifications. Thus,

x ∈ U(t)⇔ tx ≤ t < min
y∈V xf

ty

If V xf = ∅, x ∈ U(t)⇔ t ≥ tx.

Proof. (⇒) Suppose that ∃ y ∈ Vx such that ty ≤ t. In this
case, (y, x) ∈ Ef (t), which implies x /∈ U(t), which is a
contradiction.

(⇐) t < miny∈V xf ty implies that @ y such that (y, x) ∈
Ef (t), which implies that x ∈ U(t).

Let I be an interval tree containing exactly one interval
per transaction. So, for each x ∈ V , if V xf 6= ∅, then
[tx,miny∈V xf ty) ∈ I , otherwise, [tx,∞) ∈ I .

Hence, using Theorem 5 and the interval tree I , we may
calculate U(t) looking for all intervals that intersect with t.
This operation runs in O(log |V |).

The maintenance of I is also efficient, because add and
delete operations runs in O(log |V |) as well.

VI. CONCLUSION

Bitcoin’s underlying technology, blockchain, has been
called by many as a major invention, even comparable to the
invention of the internet. But it is unlikely that Bitcoin and
blockchain have achieved the final or most optimal design for a
secure and scalable electronic transaction system. In this work,
I proposed and analysed a new architecture named Hathor,
which seems a scalable alternative to Bitcoin.

Today, Bitcoin network can barely handle 8 transactions
per second without increasing the unconfirmed transaction list
to hundreds of thousands — several transactions take days
to be confirmed. In order to increase Bitcoin’s capacity, its
community has first proposed and implemented segregated
witness, which improved scalability yet was not enough.
Finally, they proposed the lightning network, which is in
development and should be available in the next months.
I believe these proposals relieve the network—a temporary
solution—, but do not solve the scalability problem.

Hathor’s architecture allows a great number of transactions
per second, since new transactions verify previous ones (and
there is no such thing as “maximum block size”). The more
transactions are coming, the faster previous transactions will
be confirmed. It is the opposite of Bitcoin because the network
benefits from high volume scenarios. As I have shown, Hathor
seems to solve the scalability problem present in Blockchain-
based cryptocurrencies without affecting security.

As the transactions also have a proof-of-work, it becomes
harder to perform a spam attack. The attacker would spend a
considerable amount of computational resources to solve the
proof-of-work of every transaction, and the amount of work
depends on the transaction’s weight parameter. Future work
may explore automatic adjustments in transaction’s weight to
improve spam prevention. For instance, the network can detect
a higher number of new transactions coming and increase the
transaction’s weight for a while. Or else, the transaction’s
weight may be a function of the time between an output
being spent and its spending transaction, so, transferring the
same tokens over and over in a small window of time would
require more work. Anyway, the transaction’s weight seems
to tackle the spam issue. The new challenge is to set a
proper transaction’s weight which would prevent spam without
impairing IoT devices.

The last, but not least, challenge is the hashpower central-
ization. Although Bitcoin seems to have the most decentral-
ized network among cryptocurrencies, there are few miners
and mining pools which together control over 50% of the
network’s computing (hash)power [19]. Hence, they have an
oversized influence when it comes to changes in the Bitcoin
protocol’s behavior. Hathor’s architecture splits the hashpower
among miners and users. Even if miners have more individual
hashpower than users, because they would have rigs with ap-
propriate cooling and energy supply, I believe their aggregate
hashpower will not surpass users’ aggregate hashpower when
millions of devices are generating transactions. Future IoT
devices may even come with an application-specific integrated



circuit (asic) designed to solve Hathor’s proof-of-work without
spending too much battery. Future work may check common
IoT processors’ hashpower, which would allows us to estimate
how many devices would be necessary to surpass miners’
hashpower.
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VII. APPENDIX: CONSENSUS ANALYSIS

A. Algorithm to find a consensus

The proposed algorithm is iterative and processes the blocks
and transactions in topological sort, which means that, when
a block or transaction is being processed, all their parents and
inputs have already been processed.
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For each block or transaction v, we store Zv as a metadata
called voided_by. The algorithm updates the sets Zv when
processing new blocks or transactions.

The algorithm assumes that the consensus is valid before
starting to process a block or transaction. Under this as-
sumption, it guarantees that the consensus will also be valid
after processing. As we start with only the genesis, the initial
consensus is always valid.

The algorithm for blocks is different from the algorithm
for transactions. While the algorithm for transactions focus on
avoiding double spendings, the algorithm for blocks focus on
finding the best blockchain.

1) Calculation of the accumulated weight av: The accumu-
lated weight is a measure of the work that has been done to
verify a transaction. It is calculated as the sum of the weight
of all descendants of v. Thus, every new block or transaction
affects the accumulated weight of all its ancestors.

Let v be a transaction, wv be the weight of v, av be the
accumulated weight of v, and A = {x ∈ V | x v}. Then,

av = log2

(
2wv +

∑
x∈A

2wx

)

The calculation of av runs in O(|V |), which may be too
expensive. So, we store previous calculations in a metadata
called acc_weight. As we will see in the algorithm, we
do not have to know the exact value of av . We just need to
compare it with another value. So, we may stop the calculation
as soon as we trespass this other value.

2) Calculation of the score (sb): The score is a measure of
the work that is being verified by a block. It is calculated as
the sum of the weight all ancestors of b. As the ancestors of a
block never changes, new blocks or transactions do not affect
the score of the blocks.

Let b be a block, wb be the weight of b, sb be the score of
b, and D = {x ∈ V | b x}. Then,

sb = log2

(
2wb +

∑
x∈D

2wx

)

The calculation of sb runs in O(|V |), which may be too
expensive. To calculate it faster, we store a metadata called
first_block for each transaction. This metadata points to
the first block that verifies it. So, it is empty when it has not
been verified by any block yet.

Let E = {v ∈ Vt | b  v ∧
v has not been verified by any block yet}. Thus, when a
new block is added to the DAG, we calculate:

sb = log2

(
2wb + 2sπ(b) +

∑
x∈E

2wx

)

This new calculation runs in O(|E|).

B. Algorithm for new transactions

This algorithm must detect conflicting transactions, and de-
cide which one of them will be executed, while the remaining
will be voided. Then, it has to guarantee that all descendants
of a voided transaction will also be voided.

The detection of conflicting transactions is simple. We store
a set of transactions spending every transaction’s output in
metadata, called spent_outputs. So, if there are two or
more transactions in the same set, they are all conflicting
transactions. The maintenance of this list is done in constant
time. It is updated when the transaction is added to G.

If a new transaction v has a conflict, we need to resolve its
conflict. The resolution is done comparing the accumulated
weight of v with the accumulated weight of every conflict x
such that Zx−{x} = ∅. There are some optimizations to make
it faster, but we will not discuss them here.

When a v, we can fastly calculate Zv as the union of its
parents’ and inputs’. As v affects the accumulated weight of all
its ancestors, we need to resolve the conflicts of all transactions
in Zv .

The algorithm is detailed in Algorithms 1, 2, 3, and 4.
There are some optimizations in Algorithm 2 regarding the

calculation of the accumulated weight. Although the calcu-
lation runs in O(|V |), most of the times we don’t have to
actually calculate it. As av < m is enough to finish the conflict
resolution, we can first compare av to the accumulated weight
of the voided transactions in B. As the accumulated weight of
voided transactions is always updated, we can do it in O(1).
Then, only if av is the highest among them, we compare
av to the accumulated weight of the executed transactions.
Even so, before calculating the values, we can compare av to
shead − sfirst-blocki + wi.

C. Algorithm for new blocks

This algorithm must find the best blockchain and ensure
that all blocks out of the best blockchain is voided.

When a new block b is added to G, it may be connected to
either the head of the best blockchain or to any other block.
If it is connected to the head of the best blockchain, it will
probably be the next head of the best blockchain, depending
only on the transactions it verifies. If all its parents are
executed, then b will be the next head of the best blockchain.
Otherwise, b will be voided.

When b is connected to any other block, we need

D. Lemmas & Theorems

Now, let’s work on some logical conclusions from this set
of rules.

Lemma 6. Let b ∈ Vb be a block. Then, sb > sx , ∀x ∈ [b].

Proof. By the definition, sx = log2

(
2wx +

∑
y|x y 2wy

)
,

and sb = log2

(
2wb +

∑
y|b y 2wy

)
. As b  x, we have

that x  y ⇒ b  y. So, {y | x  y} ⊂ {y | b  y}.
Hence,



∑
y|b y

2wy = 2wx +
∑

y 6=x|b y

2wy

≥ 2wx +
∑
y|v y

2wy

= 2sx

Finally, 2wb +
∑
y|b y 2wy >

∑
y|b y 2wy ≥ 2sx , which

implies sb > sx.

Lemma 7. b ∈ B ∧ |B| = 1⇒ [b] is the best blockchain

Proof. From Lemma 6, b has the highest score in [b]. As
|B| = 1, it is the only blockchain, and b has the highest score
of all blocks. From rule (iv), [b] is the best blockchain.

Lemma 8. Z 6= ∅ ∧ |B| = 1⇒ ∃ v ∈ V , Zv = {v}

Proof. Suppose that @ v ∈ V , Zv = {v}. In this case, let
v ∈ Z be a voided block or transaction. But, v cannot be a
block because |B| = 1, and, from Lemma 7 and rule (v), all
blocks in the best blockchain are executed.

So, v can only be a transaction. We also know that v ∈
Z ⇒ Zv 6= ∅. Let x ∈ Zv be a block or a transaction.
Because of rule (v), x cannot be a block, so x must be a voided
transaction with conflicts. Thus, from rule (ix), x ∈ Zx, which
is a contradiction.

Lemma 9. Let v be a transaction, then ∃Zx , v ∈ Zx ⇒ v
has a conflict ∧v ∈ Zv .

Proof. Suppose that v is a transaction with no conflicts. Then,
from rule (vii), v /∈ Zv . Let’s partition V in two subsets:
descendants and non-descendants of v.

For the descendants, from rule (i), x /∈ Zy ∀ y , y  x.
For the non-descendants, suppose that z ∈ V such that z 6 

x and v ∈ Zz . Thus,

Theorem 10. Let G be a DAG with no conflicting transactions
and a single blockchain. Then f(v) = ∅ is the only valid
consensus.

Proof. Suppose that f is a valid consensus, and ∃ v ∈
V , f(v) = Zv 6= ∅. It implies that Z 6= ∅. As there is
a single blockchain, we have |B| = 1. So, from Lemma 8,
∃ v ∈ V , Zv = {v}. But, from rule (vii), v ∈ Zv ⇒ v has a
conflict, which is a contradiction.

Conjecture 11. For any G, there is only one valid consensus
S.

VIII. APPENDIX: BITCOIN ANALYSIS

The primary objective of this chapter is to increase the
understanding of Bitcoin through mathematical tools.

A. Hash function
Hash functions has been widely studied in computer science.

In short, a hash function h : {0, 1}∞ → {0, 1}n has the
following properties:

1) x = y ⇒ h(x) = h(y)
2) h(x) ∼ U(0, 2n−1), where U is the uniform distribution,

i.e., ∀a ∈ [0, 2n − 1],P(h(x) = a) = 1
2n

In other words, when two inputs are the same, they have
the same output. But, when the inputs are different, their
outputs are uniformly distributed. Clearly, the hash functions
are surjective but not injective. They are not injective because
the image of h has only 2n elements and the domain has
infinite elements. When x 6= y and h(x) = h(y), we say that
x and y are a collision. A hash function is considered to be
safe when it is unknown how to quickly find a collision of a
given hash, i.e., one has to check all possible values until the
correct one is found (known as the brute-force attack).

Bitcoin uses two hash functions: HASH-160 and HASH-
256. The first has n = 160 and consists of the composition
of SHA-256 and RIPEMD-160. The latter has n = 256 and
applies SHA-256 twice. The first is used in transactions’ scripts
and the latter in the mining algorithm. For both hash functions,
it is infeasible to run a brute-force attack because it would
demand, on average, either 2160 or 2256 trials, and those would
take a tremendous amount of time even for the fastest known
processors.

For further information about hash functions, see Gilbert
and Handschuh [34], Dobbertin et al. [35].

B. Mining one block
Let B be the set of Bitcoin blocks and h : B→ {0, 1}256 be

the Bitcoin HASH-256 function. The mining process consists
of finding x ∈ B such as h(x) < A, where A is a given
threshold. The smaller the A, the harder to find a new block.
In fact, P(h(x) < A) = A

2256 .
Hence, in order to find a new block, one must try different

inputs (x1, x2, . . . , xk) until they find a solution, i.e., all
attempts will fail (h(xi) ≥ A for i < k) but the last (h(xk) <
A). The probability of finding a solution exactly in the kth

attempt follows a geometric distribution. Let X be the number
of attempts until a success, then P(X = k) = (1 − p)k−1p,
where p = A

2256 . Also, we have P(X ≤ k) = 1−(1−p)k. The
average number of attempts is E(X) = 1/p and the variance
is V(X) = 1−p

p2 .
In the Bitcoin protocol, the given number A is adjusted

so that the network would find a new a block every 10
minutes, on average. Suppose that the Bitcoin network is able
to calculate H hashes per second — H is the total hash rate
of the network. The time required to find a solution would
be T = X/H , and E(T ) = E(X)/H would be the average
number of seconds to find a new block. So, the rule of finding
a new block every 10 minutes (η = 600 seconds) — on
average — leads to the following equation: E(T ) = η = 600.
So, E(T ) = E(X)/H = 1

pH = η = 600 ⇒ p = 1
ηH .

Finally, E(X) = ηH , E(T ) = η, V(X) = (ηH)2 − ηH ,
and V(T ) = η2 − η/H .



The cumulative distribution function (CDF) of T is P(T ≤
t) = P(X/H ≤ t) = P(X ≤ tH) = 1 − (1 − p)tH =

1−
(

1− 1
ηH

)tH
. But, as the Bitcoin network hash rate is really

large, we may approximate the CDF of T by limH→∞P(T ≤
t) = 1 − e−

t
η , which is equal to the CDF of the exponential

distribution with parameter λ = 1
η .

Theorem 12. When H → +∞, the time between blocks
follows an exponential distribution with parameter λ = 1

η ,

i.e., limH→+∞P(T ≤ t) = 1− e−
t
η .

Proof.

P(T ≤ t) = 1− (1− p)tH

= 1−
(

1− 1

ηH

)tH
Replacing u = ηH ,

lim
H→+∞

P(T ≤ t) = lim
u→+∞

1−
(

1− 1

u

) tu
η

= lim
u→+∞

1−
[(

1− 1

u

)u] tη
= 1− (1/e)

t
η

= 1− e−
t
η

Now, we would like to understand from which value of
H it is reasonable to assume that T follows an exponential
distribution.

Theorem 13. x > M ⇒ |(1 + 1/x)x − e| < e/M .

Proof. Let’s use the classical inequality x
1+x < log(1+x) < x

for x > −1. So, 1/x
1+1/x < log(1 + x) < 1/x. Simplifying,

1/x
1+1/x = 1/(1 + x). Thus, 1/(1 + x) < log(1 + 1/x) <

1/x⇒ x/(1 + x) < x log(1 + 1/x) < 1.

As log(1 + 1
M ) > 0 and 1 < 1 + log(1 + 1

M ).

x > M ⇒ 1/x < 1/M ⇒ 1 + 1/x < 1 + 1/M ⇒ 1/(1 +
1/x) > 1/(1 + 1/M)⇒ x/(1 + x) > M/(1 +M).

Again, log(1 + x) < x ⇒ log(1 − 1/M) < −1/M ⇒
1 + log(1 − 1/M) < (M − 1)/M < M/(1 + M), since
(x− 1)/x < x/(x+ 1).

Hence, 1 + log(1 − 1/M) < M/(1 + M) < x/(1 + x) <
x log(1 + 1/x), and x log(1 + 1/x) < 1 < 1 + log(1 + 1

M ).

Finally,

1 + log(1− 1/M) < x log(1 + 1/x) < 1 + log(1 +
1

M
)

e1+log(1−1/M) < ex log(1+1/x) < e1+log(1+ 1
M )

e · elog(1−1/M) < elog((1+1/x)x) < e · elog(1+ 1
M )

e(1− 1/M) < (1 + 1/x)x < e(1 +
1

M
)

e− e/M < (1 + 1/x)x < e+ e/M

−e/M < (1 + 1/x)x − e < e/M

Therefore, |(1 + 1/x)
x − e| < e/M .

We may consider H big enough to say that T follows an
exponential distribution when e/H < ε, where ε is the max-
imum approximation error. When ε = 10−6 ⇒ H > e · 106.
So, when H > 2.6Mh/s, our approximation is good enough.

The symmetrical confidence interval with level α would be
[t0, t1], where P(t0 < T < t1) = 1 − α, P(T < t0) = α/2,
and P(T > t1) = α/2. These conditions give the following
equations: 1 − e−t0/η = α/2, and e−t1/η = α/2. Solving
these equations, we have t0 = −η ln (1− α/2), and t1 =
−η ln (α/2).

For instance, if α = 10%, then t0 = 30.77 and t1 = 1797.44
(or [0.51, 30.76] in minutes). Thus, 90% of the time the
intervals between blocks are between 30 seconds and 30
minutes, with average of 10 minutes.

The fact that the time between blocks follows an exponential
distribution with λ = 1/η = pH may be used to estimate the
total network’s hash rate (or a miner’s hash rate). For further
information, see Ozisik et al. [36].

C. Mining several blocks

Let T1, T2, T3, . . . , Tn be the time to find the first block (T1),
then the time to find the second block (T2), and so on. Let’s
analyze the distribution of Yn =

∑n
i=1 Ti which is the total

time to find the next n blocks. As Yn is the sum of random
variables which follow an exponential distribution with same
λ = 1

η , then Yn ∼ Erlang(n, 1η ). Thus, the CDF of Y would
be P(Yn < t) = 1−

∑n−1
k=0

1
k!e
−λt(λt)k.

Many exchanges require at least six confirmations in order
to accept a deposit in Bitcoin. So, for n = 6, P(Y6 <
1 hour) = P(Y6 < 3600) = 0.5543, i.e., only 55% of
the deposits will be accepted in one hour. The symmetrical
confidence interval with α = 10% is [27, 105] in minutes.
Thus, 90% of the times, it will take between 27 minutes
and 1 hour and 45 minutes to have your deposit accepted
— assuming that your transaction will be confirmed in the
very next block. The pdf of Y6 is shown in Figure 10, in
which the 10% symmetrical confidence interval is shown in
the white area. The average total time of six confirmations is
E(Y6) = 6 · 600 = 3600 = 60 minutes.

D. Mining for a miner

Let’s analyze the probability of finding a new block for a
miner who has α percent of the network’s total hash rate. Let



Fig. 10: Probability density function of Y6, i.e., probability
of finding 6 blocks after time t. The shaded areas shows the
lower 5% and upper 5% of the pdf.

Tα = X
αH be the time required for the miner to find a new

block. As Tα =
(
1
α

)
T , when H → +∞, Tα also follows an

exponential with parameter λα = α
η . Hence, we confirm the

intuition that the miner with α percent of the network’s total
hash power will find α percent of the blocks.

Theorem 14. When the miner with α percent of the net-
work’s total hash rate is part of the mining network,
P(next block is from Tα) = α.

Proof.

P(next block is from Tα) = P (Tα = min{Tα, T1−α})

=
λα

λα + λ1−α

=
α/η

α/η + (1− α)/η

=
α

α+ 1− α
= α.

Theorem 15. When one miner with α percent of the network’s
total hash rate multiplies their hash rate by m, the probability
of this miner find the next block is multiplied by m

mα+1−α .

Proof. When miners increase their hash rate, they also in-
crease the network’s total hash rate. Let H be the network’s
hash rate before the increase. Thus, the network’s total hash
rate after the increase is H + (m− 1)αH = (1−α+mα)H .

So,

P(next block is from Tmα) = P (Tmα = min{Tmα, T1−α})

=
λmα

λmα + λ1−α

=
mα/η

mα/η + (1− α)/η

=
mα

mα+ 1− α

= α

(
m

mα+ 1− α

)
.

Corollary. If one miner has a really tiny percent of the
network’s total hash rate, then multiplying their hash rate by
m approximately multiplies their probability of finding the next
block by m.

Proof.

lim
α→0

P(next block is from Tmα) = lim
α→0

m

mα+ 1− α
= m.

That way, it is not exactly correct to say that when one
doubles their hash rate, their probability will double as well.
It is only true for small miners.

E. Orphan blocks

An orphan block would be created if a new block is
found during the propagation time of a new block. Let α
be the percentage of the total hash rate of the node which
is outdated, and ∆t the propagation time in seconds. Thus,
P(new orphan) = P(T < ∆t) = 1− e−

α∆t
η .

Bitcoin peer-to-peer network is a gossip network, where
miners are semi-randomly connected to each other, and each
miner sends all information it receives to all its peers. Ac-
cording to Decker and Wattenhofer [37], the average time
for a new block propagate over the network is 12.6 seconds,
while the 95% percentile is 40 seconds, which indicates
a long-tail distribution. BitcoinStats [38] has measured the
propagation time between 2013 and 2017. During 2017, the
worst daily 90% percentile was 21 seconds. Notice that both
results may not be contradictory because the Bitcoin network
is continuously evolving.

For instance, if a node has 10% of the total hash rate and it
takes 30 seconds to receive the update, then P(new orphan) =
1 − e− 0.1·30

600 = 0.004987, which is almost 0.5%. I would say
that a node with 10% of the total hash rate would be well
connected and it would take less time to receive the update,
so, the probability would be even smaller than 0.5%.

Another important factor is that, as Bitcoin is open-source,
miners are free to change the gossip algorithm, which leads
to the network incentives. See Babaioff et al. [39] for an
analysis of the incentives to miners forward new blocks and
transactions in the network.

For further information about gossip algorithms, see Shah
et al. [40].



F. Analysis of network’s hash rate change

The difficulty, given by the number A, is adjusted every
2016 blocks. As, P(13 days < Y2016 < 15 days) = P(13 ·
24 · 3600 < Y2016 < 14 · 24 · 3600) = 0.9986, it is expected
that the total time to find 2016 blocks will be between 13
and 15 days, assuming that the network’s hash rate remains
constant. If it takes less than the expected time, it means that
the network’s total hash rate has increased. While if it takes
more than the expected time, it means that the network’s total
hash rate has decreased. So, let’s analyze what happens when
the network’s hash rate changes significantly.

Let H · u(t) be the network’s total hash rate over time. So,
the number of hashes calculated in t seconds is H

∫ t
0
u(t)dt.

Hence, P(T ≤ t) = P(X ≤ H
∫ t
0
u(t)dt). When H → +∞,

P(T ≤ t) = 1 − e−
1
η

∫ t
0
u(t)dt, and the pdf of T is u(t)

η ·
e−

1
η

∫ t
0
u(t)dt.

1) Hash rate suddenly changing: Let’s say that the net-
work’s total hash rate has suddenly multiplied by α. So,
u(t) = α,

∫ t
0
u(t)dt = αt, and T also follows an exponential

distribution, but with λ = α
η . Thus, Y αn =

∑n
i=1 T

α
i ∼

Erlang(n, αη ). Thus, E[Y αn ] = E[Yn]
α , i.e., the average total

time required to find n blocks will be divided by α, while
V[Y αn ] = V[Yn]

α2 and the variance will be divided by α2.
Hence, on one hand, when the network’s hash rate increases
(α > 1), the 2016 blocks will be found earlier. On the other
hand, when the network’s hash rate decreases (α < 1), the
2016 blocks will be found later.

For example, if the network’s total hash rate suddenly dou-
bles (α = 2), then P(6.5 days < Y2016 < 7.5 days) = 0.9986,
and the time required to find 2016 blocks halved. On the
other side, if the network’s total hash rate suddenly halves
(α = 0.5), then P(27 days < Y2016 < 29 days) = 0.9469,
and the time required to find 2016 blocks doubled. It is an
important conclusion, since it shows that even if half of the
network stops mining, it will only double the time to the
next difficulty adjustment, i.e., the time between blocks will
be 20 minutes for, at most, the next 29 days, at which point
the adjustment will occur and everything will be back to the
normal 10 minutes between blocks.

2) Hash rate smoothly changing: Let u(t) = 1+abx
1+bx . It is

an useful function because u(0) = 1 and limt→∞ u(t) = a.
The bigger the b, the faster u(t)→ a. For example, if a = 2,
it means H would be smoothly doubling. If a = 0.5, it means
H would be smoothly halving.

It is easy to integrate u(t) because 1+abx
1+bx = 1−a

1+bx+a, which
yields

∫ t
0
u(x)dx = at+ 1−a

b log(1 + bt). So,

FT (t) = 1− (1 + bt)
λ(a−1)

b e−λat.

fT (t) = λ

(
1 + abt

1 + bt

)
(1 + bt)

λ(a−1)
b e−λat.

Assuming that n = λ(a−1)
b is integer, we have:

FT (t) = 1− (1 + bt)ne−λat

Let L be the Laplace Transform. Thus,

L{FT (t)} = L{1− (1 + bt)ne−λat}
= L{1} − L{(1 + bt)ne−λat}

(L is a linear operator)

=
1

s
− L{(1 + bt)ne−λat}

=
1

s
−

n∑
k=0

(
n

k

)
bkL{tke−λat}

=
1

s
−

n∑
k=0

(
n

k

)
bk

k!

(s+ λa)k+1

Hence, as L{fT (t)} = sL{FT (t)},

L{fT (t)} = 1−
n∑
k=0

(
n

k

)
sbkk!

(s+ λa)k+1

Then,

d

ds
L{fT (t)} = −

n∑
k=0

(
n

k

)
bkk!

d

ds

s

(s+ λa)k+1

= −
n∑
k=0

(
n

k

)
bkk!

[
1

(s+ aλ)k+1
− s(k + 1)

(s+ aλ)k+1

]
d

ds
L{fT (t)}|s=0 = −

n∑
k=0

(
n

k

)
bkk!

1

(λa)k+1

= − 1

aλ

n∑
k=0

(
n

k

)
k!

(
b

λa

)k
= − 1

aλ

n∑
k=0

n!

(n− k)!

(
b

λa

)k
= − 1

aλ

[
n!

n∑
k=0

1

(n− k)!

(
b

λa

)k]

= − 1

aλ

[
n!

n∑
k=0

1

k!

(
b

λa

)n−k]
(k → n− k)

= − 1

aλ

[
n!

(
b

λa

)n n∑
k=0

1

k!

(
b

λa

)−k]

= − 1

aλ

[
n!

(
b

λa

)n n∑
k=0

1

k!

(
λa

b

)k]
Finally, as E[T ] = −L{fT (t)}|s=0,

E[T ] =
1

λa

[
n!

(
b

λa

)n n∑
k=0

1

k!

(
λa

b

)k]
, where n =

λ(a− 1)

b

Let’s check this equation for already known scenarios.
When a = 1, then n = 0 and E[T ] = 1/λ. When b → +∞,
it reduces to the case in which the hash rate is multiplied by
a, which we have already studied. In fact, b → +∞ yields
n→ 0, u(t)→ a, and E[T ] = 1

λa .



Theorem 16.

a > 1 and x > M ⇒
∣∣∣∣1 + abx

1 + bx
− a
∣∣∣∣ < a− 1

1 + bM

Proof. x > M ⇒ 1
1+bx < 1

1+bM . As 1 − a < 0, 1−a
1+bx >

1−a
1+bM . Thus, 1−a

1+bM < 1−a
1+bx+a−a = 1+abx

1+bx −a < 0 < a−1
1+bM .

Hence, − a−1
1+bM < 1+abx

1+bx − a <
a−1

1+bM .

For instance, if we would like to know the impact of
smoothly double the hash rate in the next week, then the
parameters would be λ = 1/600, a = 2, M = 1 week =
3600·24·7 = 604, 800, b can be calculated using ε = a−1

1+bM <
0.01, which yields b > 0.000163690 and n < 10.1818. So, for
n = 10, then b = 0.000166666 and ε = 0.009823 < 0.01, as
expected. Finally, E[T ] = 557.65. In other words, during the
next week, the average time between blocks will be 9 minutes
and 17 seconds, instead of the normal 10 minutes. If the hash
rate had suddenly doubled, the average time between blocks
would be 5 minutes.

3) Piecewise linear model of hash rate change: Let’s ana-
lyze what would happen if the network’s hash rate is growing
linearly with angular coefficient a2, i.e., u(a, b, t) = a2t + b.

Thus, P(T ≤ t) = 1− e−
bt+a2t2/2

η .
It is well known that E(T ) =

∫∞
0

1 − P(T ≤ t)dt. Thus,
replacing y = a2t+b

a
√
2η

, and using the fact that
∫∞
0
e−x

2

dx =
√
π
2 erf(x), we have:

E(T )|t2t1 =

∫ t2

t1

exp

(
−bt+ a2t2/2

η

)
dt

=

√
2η

a
exp

(
b2

2a2η

)∫ y2

y1

exp(−y2)dy

=

√
2η

a
exp

(
b2

2a2η

) √
π

2
[erf(y1)− erf(y2)]

=

√
2πη

2a
exp

(
b2

2a2η

)
[erf(y2)− erf(y1)] (1)

Where y1 = a2t1+b
a
√
2η

and y2 = a2t2+b
a
√
2η

.

Thus, E(T ) = E(T )|∞0 . When t1 = 0 ⇒ y1 = b2

2
√
2η

and
t2 →∞⇒ y2 →∞⇒ erf(y2) = 1, then:

E(T ) =

√
2πη

2a
exp

(
b2

2a2η

)[
1− erf

(
1

a
√

2η

)]
4) Comparison of the models: In order to compare the

hash rate change models, namely (i) suddenly changing, (ii)
smoothly changing, and (iii) linearly changing, I have applied
each of them to the same scenarios. In the first scenario, the
hashrate will double in the next week, whereas, in the second
scenario, it will halve in the next week.

In both the smoothly change model and the linear change
model, I could have calculated each model’s average time
between blocks during one week. But, it would not give
us much information, because the estimated average time
between models would be increasing (or decreasing) more and

more as the days goes by. And we are really interested in the
average time between blocks throughout the days, and not the
average of one week.

Thus, I have analyzed a piecewise hash rate change, i.e.,
I have calculated the average time between blocks for each
hour throughout the week. First, I split the whole week into
24·7 intervals, (t0, t1, t2, . . . , t168), where ti = 3600i. Then, I
calculated the average for each interval (tk, tk+1). Let H0

k and
H1
k be the initial and final hash rate of the (tk, tk+1) interval.

So, I also ensured the continuity of the hash rate between
consecutive intervals, i.e., H1

k = H0
k+1.

I compared both the smoothly change model and the linear
change model with the suddenly changing model. The differ-
ence between them is negligible. Let ε be the maximum abso-
lute error between the models, than ε < 0.8 and ε/H < 0.2%,
for all intervals. The maximum absolute error between the
linear and the suddenly changing models can be seen in Figure
11.

Fig. 11: Maximum absolute error between the linear and the
suddently change models.

Therefore, we may conclude that it is reasonable to approxi-
mate the average time between blocks using only the suddenly
changing model in each interval of one hour.

The average time between blocks throughout the days can
be seen in Figure 12. It was calculated using the suddenly
changing model with the hash rate changing linearly during
the week.

G. Attack in the Bitcoin network

There are many possible ways to attack the Bitcoin network
[41, 42, 43, 44, 45]. In this section, we are interested in a
particular attack: the double spending attack.

In the double spending attack, the attacker’s send some
funds to the victim, let’s say a merchant. They wait for k
confirmations of the transaction, and the victim delivers the
good or the service to the attacker. Then, the attacker mine
enough blocks with a conflicting transaction, double spending
the funds which was sent to the victim. If the attacker is
successful, the original transaction will be erased and the
victim will be left with no funds at all. In order to be
successful, the attacker must propagate more blocks than the
network in the same period, propagating a chain longer than
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Fig. 12: The average time between blocks when the hash rate
changes over time.

the main chain. Hence, we would like to understand what the
odds are that the attacker will be successful. This attack was
originally discussed by Nakamoto [16].

In order to maximize their odds, the attacker must start
to mine the new blocks as soon as they send the funds to
the victim. In this moment, it starts to mine in the head of
the blockchain, just like the rest of the network. So, in the
beginning, the attacker and the network are in exactly the same
point.

Let βH be the hash rate of the attackers, and γH be
the network’s hash rate without the attackers. Thus, when
H → +∞, we already know that Tattackers and Tnetwork follow
exponential distributions with parameters λattacker = β

η and
λnetwork = γ

η , respectively.
As Nakamoto [16] has done, we will also model the attack

using the Gambler’s Ruin. In this game, a gambler wins $1 at
each round, with probability p, and loses $1, with probability
1 − p. The rounds are independent. The gambler starts with
$k plays continuously until he either accumulates a target
amount of $m, or loses all his money. Let ρ = 1−p

p , then
the probability of losing his fortune is:

P(losing his fortune) =

{
ρk−ρm
1−ρm , if ρ 6= 1,
m−k
m , if ρ = 1.

When m→ +∞,

P(losing his fortune) =

{
ρk, if ρ < 1,
1, if ρ ≥ 1.

The gambler winning $1 is the same as the network finding
a new block, the gambler losing $1 is the same as the attacker
finding a new block. The initial $k is the same as the number
of blocks the attacker is behind the network. Thus, the gambler
loses his fortune is the same as the attacker successfully finds
k or more blocks than the network, i.e., losing his fortune
means that the attack was successful.

In our case, p = λnetwork
λnetwork+λattacker

= γ
β+γ , thus ρ = β

γ . Hence,
ρ < 1⇔ β < γ.

Suppose that the attacker is mining with the network. Sud-
dently, he stops mining with the network and starts attacking,
i.e., starts to mine in another chain. In this scenario, since the
attacker’s hash rate is not mining with the network anymore,
γ = 1 − β. Thus, β < γ ⇒ β < 0.5 ⇔ ρ < 1. Here
comes the conclusion that, if the attacker has 50% or more
of the network’s hash rate, then his attack will be certainly
successful. We got exactly the same equations and conclusions
as Nakamoto [16].

But this scenario seems not to be the optimal attack, because
the attacker has waited k confirmations before starting the
attack. A better approach would be to start attacking just after
propagating the transaction. In this case, our previous model is
not good, because even if the attacker have found more blocks
than the network, he cannot propagate those blocks before the
network has found k confirmations. So, we have to model
the probabilities before the network has found the k block.
Then, if the attacker has more blocks than the network, he
has successfully attacked. Otherwise, we return to the previous
model, in which the attacker must still find more blocks.

Theorem 17. Assuming that the attacker starts the attack just
after publishing the transaction, the probability of the attacker
has already found exactly s blocks while it waits the network
to find k blocks is P(S = s) =

(
k+s−1
s

)
(1− p)spk.

Proof. The attacker must find exactly s blocks while the
network must find exactly k blocks. It is as they would be
walking the grid from the point (0, 0) to (s, k), where it is only
allowed to go up or right, like in Figure 13. When the attacker
finds a block, it would be a movement to the right. When the
network finds a block, it would be an upward movement. No
matter the order which the blocks are found, all the paths occur
with probability (1− p)spk.

The walking ends when (·, k) is reached, i.e., when the
network finds k blocks, regardless of how many blocks the
attacker has found – i.e., it is not allowed to walk above
the line (·, k). Thus, the number of paths between (0, 0) and
(s, k) moving only upward or to the right, without going into
the line (·, k) is exactly the number of paths between (0, 0)
and (s, k − 1), which is equal to the number of permutations
of the sequence (u, u, . . . , u, r, r, . . . , r) in which there are
s movements to the right (r) and k − 1 upward movements



(u). This number of permutations is (k−1+s)!
s!(k−1)! =

(
(k−1)+(s)

s

)
because there are s repetitions of the element r and k − 1
repetitions of the element u.

Finally, the probability is
(
k+s−1
s

)
(1− p)spk.

(3, 6) (7,6)

Fig. 13: Both the attacker and the network are mining. Each
step up is a new block found by the network with probability
p. Each step right is a new block found by the attacker with
probability 1−p. It ends when the network finds k blocks — in
this example, k = 6. The red path has probability p6(1− p)3,
while the blue path has probability p6(1−p)7. Notice that the
blue path is a successfull attack, because the attacker has found
more blocks than the network. In the red path, the attacker still
have to catch up 3 blocks to have a successful attack, which
happens with probability ρ3, if p < 0.5.

Assuming that the attacker starts mining just after publish-
ing the victim’s transaction, the probability of the attacker will
have found more than k blocks while it waits the network to
find k blocks is P(S ≥ k) =

∑∞
s=k

(
k+s−1
s

)
(1− p)spk.

Theorem 18.

P(S ≥ k) = 1−
k−1∑
s=0

(
k + s− 1

s

)
(1− p)spk.

Proof. Let’s use the following identity:

1

(1− z)a+1
=

∞∑
i=0

(
i+ a

i

)
zi, for |z| < 1

Thus, replacing z = 1− p, i = s, and a = k − 1, we have:

1

pk
=

∞∑
s=0

(
s+ k − 1

s

)
(1− p)s

1 =

∞∑
s=0

(
s+ k − 1

s

)
(1− p)spk.

Now, just split
∑∞
s=0 =

∑k−1
s=0 +

∑∞
s=k and it is done.

Using this last theorem, we moved from an infinity sum to
a finity sum.

Theorem 19. Let p = γ
β+γ .

P(successful attack) =

{
1−

∑k−1
s=0

(
k+s−1
s

) (
(1− p)spk − (1− p)kps

)
, p ≥ 0.5

1, p < 0.5.

Proof.

P(successful attack) = P(S ≥ k) +

k−1∑
i=0

P(s = i)ρk−i

For k = 6, p = 0.9, P(successful attack) =
0.0005914121600000266.

For k = 6, p = 0.7, P(successful attack) =
0.15644958192000014.

Fig. 14: Probability of a successful attack according to the
network’s hash rate of the attacker (β).

H. Confirmation time and network capacity

Let’s say that when a new transaction is propagated it is
enqueued in the unconfirmed transaction queue. Then, when a
new block is found, some of these transactions in the queue are
confirmed. We are interested in some measures of the queue,
like the expected time to confirm a transaction and the queue’s
length.

Let’s assume that all transactions have exactly the same
size S and pay exactly the same fee. If the Bitcoin block’s
maximum size is M , there would be room for s = bM/Sc
transactions in each block.

Using the results from Bailey [46], we have found that πn =
zs−1
zn+1
s

is the probability of having n unconfirmed transactions
in the pool subjected to s > m, where m = λTX

λblocks
and zs is

the single root of the polynomial zs(1 +m(1− z))− 1 with
|zs| > 1. In this case, the average size of the unconfirmed
transaction pool is E(π) = 1

zs−1 .
When s > m, the probabilities πn form a simple geometric

series with common ratio smaller than one, which means the
probabilities are exponentially decreasing. Since πn → 0 when



n → ∞, we may interpret it as a stable system, i.e., the
unconfirmed transactions pool size is finite.

When s ≤ m, the system is unstable, which means the
unconfirmed transactions pool size keeps growing towards
infinity. In this case, the system is not capable of processing
the demand for a long period of time.

Using the fact that m = λTX
λblocks

and λblocks = 1/η, the stability
condition s > m is reached when λTX < s/η.

In the Bitcoin network, the average number of transactions
per block is s = 2, 250, so, the system is stable when
λTX < 2, 250/600 = 3.75 tx/s. Therefore, 3.75 is the
maximum number of new transactions per second that the
Bitcoin network may handle. When λTX > 3.75 tx/s, the
unconfirmed transaction pool starts to grow indefinitely.

When the system is stable, the average waiting time of a
transaction to be confirmed is E(w) = 1

λTX(zs−1) .
m� s yields zs → 1 + 1/m. Thus, the average number of

unconfirmed transactions E(π)→ m and the average waiting
time E(w) → 1

λblocks
= η = 600 seconds. In the Bitcoin

network, m � s is reached when λTX � 3.75 tx/s. In other
words, when the number of new transactions per second is way
smaller than 3.75 tx/s, the average waiting time of a transaction
to be confirmed is 600 seconds, which means, on average, all
transactions will be confirmed in the next block.

But, λTX → s/η yields zs → 1. Hence, E(π) → +∞,
which means the system is going towards instability.

Therefore, we conclude that the Bitcoin network capacity
is λblocks = s/η = s/600 transactions per second, where s is
the average number of transactions per block.

For instance, in order to be a stable system and process 15
transactions per second, each block would have to confirm,
on average, 9,000 transactions. Bitcoin’s network is really far
from this point.

IX. NOTES ON SCALABILITY

Many projects have been claiming to process dozens of
thousands of transactions per second, even hundreds of thou-
sands of transactions per second. I do not know whether they
can really process these numbers of transactions per second,
but I would like to make a few comments about it.

Before going into the limit of the number of transactions
per second, I think we should answer the following question:
Whom are we developing Hathor to? Should it run either in
a home computer or in a data center? I think both of these
questions are important to understanding how far we can go
in the number of transactions per second.

In Hathor, a transaction is made of inputs, outputs, parents,
and some other fields. As part of the verification of a trans-
action validity, we need to verify the digital signatures of the
inputs. The inputs may be linked to different types of outputs.
For a P2PKH output, we need to verify one digital signature.
For a P2SH output using multisig, we need to verify n digital
signatures, according to the multisig configuration. Anyway,
we need to verify at least one digital signature per transaction.

Hence, we run a performance test to check how many digital
signatures a home computer is able to verify, and the results

are surprising. We chose to test the secp256k1, which is an
elliptic curve digital signature algorithm defined in Standards
for Efficient Cryptography (SEC) and used by Bitcoin and
many other tokens.

A. Methodology

The performance test of the secp256k1 algorithm was
developed in Python 3.6 calling the libssl library, while the
tests of the ecdsap256 and the rsa2048 were directly tested in
the openssl command-line interface.

We used Python 3.6 because it is easy for anyone to run the
test as well. The overhead of the language seems negligible
because it is just calling the libssl library. Even so, maybe it
is a good idea to run the performance tests again but entirely
developed in C language.

B. Results

A 2.7 GHz Core i7 (I7-8559U) processor can verify 2,700
digital signatures per second per core. As it has four physical
cores and eight virtual cores, if we assume no overhead, it will
be able to verify up to 10,800 digital signatures per second
using all four cores.

We have tested with several other processors, but all of them
had poorer performance than the i7 processor above.

In 2012, Peter Wulle ran a similar test using a 2.2 GHz Core
i7- (I7-670QM) and could verify 1,735 digital signatures per
second per core. See https://bitcointalk.org/index.php?topic=
103172.msg1131983#msg1131983.

C. Other algorithms

We have also tested ecdsap256 and rsa2048 in the same
processor. The i7 was the fastest again and can verify 464
digital signatures of ecdsap256 per second per core, and 854
digital signatures of the rsa2048 per second per core.

D. Discussion

I wonder what processors those projects are using to be
able to process that number of transactions per second. Either
they are using other digital signatures algorithms, or they are
processing the transactions in a data center with several servers
distributing the verifications among them. If they are using a
different digital signature algorithm, we need to check whether
it may affect the security of the tokens.

Another possibility is to use a better processor. The Xeon
processors may have up to 64 cores, but they seem too
expensive for home users. In Brazil, a Xeon processor with
18 cores costs around $ 1,800.

Thus, it does not seem fair to compare Hathor with those
projects, since they have very different specifications. While
Hathor is being developed to be executed in any home com-
puter, they seem to be developed to be executed in data centers.

As transactions may have multiple inputs, reducing, even
more, the number of transactions per second, and Hathor has
also to handle many more things than just verifying the digital
signatures, I believe that the estimated limit to the number of
transactions per second should be around 2,000 and 4,000 for
home computers.

https://bitcointalk.org/index.php?topic=103172.msg1131983#msg1131983
https://bitcointalk.org/index.php?topic=103172.msg1131983#msg1131983


Currently, Hathor implementation can handle 300 tps in a
single core of the 2.7 GHz Core i7 (I7-8559U) processor. Thus,
we aim to reach between 1,200 and 1,500 after distributing the
tasks among the four physical cores.

X. HASH RATE ESTIMATION

A. Introduction

We would like to update the block’s weight every new block.
This would make the network adjust faster to changes in the
network’s hash rate.

Let Xi be the number of hashes to solve the ith block. From
my thesis, Xi follows a geometric distribution with parameter
pi = 2−wi . Let H be the hash rate (hashes/second), and Ti =
Xi/H be the time taken to calculate the Xi hashes. Finally,
let θ the target average time between blocks.

Let wi be the weight of the ith block, and ti be the time
the network took to solve the ith block. The time interval ti is
the difference between the timestamp of the blocks i+ 1 and
i. An attacker may try to tamper with a block’s timestamp to
obtain an advantage when mining.

From the blockchain, we calculate {t1, t2, . . . , tn}, which
are samples of Ti with a known wi (which means Xi is well
defined).

We know that H may change over time. The problems are:
how do we calculate the next block’s weight? What is the best
estimator for the average of H in the last minutes? The optimal
number of minutes is part of the problem because it affects
the variance of the estimator.

B. Naïve estimator

From the definition we know that E[Ti] = 2wi/H and
V[Ti] = 2wi(2wi − 1)/H2.

Then,

E
[∑

i
Ti

]
=

∑
i 2wi

H

As
∑
i ti is a sample of

∑
i Ti, the naïve estimator is given

by the following equation:

Ĥ =

∑
i 2wi∑
i ti

Finally, if we would like to find a new block every θ sec-
onds, the next block’s weight should be wn+1 = log2(H · θ),
since E[Xn+1] = 1/pn+1 = 2wn+1 = H · θ ⇒ E[T ] =
E[X]/H = θ.

1) Study case: wi is constant: Let’s analyse a scenario with
wi constant, i.e., ∀i ∈ {1, 2, . . . , n} , wi = w. This means we
will update the weight every n blocks instead of every block.

Using the central limit theorem, when n is big enough, we
can use the variance to calculate the confidence interval of∑
i ti/n. Hence,∑

i ti
n
∈ 2w

H
·

(
1± zα

√
1− 2−w

n

)

Where zα is the well-known z-score and n must be large
enough to the central limit theorem. For a 95% confidence in-
terval, zα = 1.96; for a 99% confidence interval, zα = 2.576.

Let w∗ be the optimal weight where the average time
between blocks is θ. Then, 2w

∗
= H · θ. Replacing in the

confidence interval, we have:

∑
i ti
n
∈ θ · 2w−w

∗
·

(
1± zα

√
1− 2−w

n

)
(2)

In this scenario, Ĥ = (n · 2w)/
∑
i ti. Replacing in Equa-

tion 2, we obtain:

Ĥ ∈ 2w
∗

θ
·

(
1± zα

√
1− 2−w

n

)−1
(3)

In the real network, w is usually way bigger than 25. Thus,√
1− 2−w ≈ 1, and we get:

Ĥ ∈ 2w
∗

θ
·
(

1± zα√
n

)−1
(4)

As 2w
∗
/θ is multiplying the interval, we can analyze the

interval percentually, i.e., only the 1± zα/
√
n part. In Table I

we can see some confidence intervals for θ = 60 seconds.

Frequency n CI 99%
Every 30 minutes 30 (0.5510, 5.3938)
Every hour 60 (0.7504, 1.4982)
Every day 1,440 (0.9364, 1.0728)
Every week 10,080 (0.9749, 1.0263)
Every two weeks 20,160 (0.9821, 1.0184)

TABLE I: 99% confidence interval (zα = 2.576) for θ = 60
seconds

One compelling advantage of this estimation method is that
it only depends on the difference between the timestamp of
the first and last blocks since

∑
i ti is equal to this difference.

So, if an attacker is tampering with the timestamps, but most
blocks are mined by honest miners, the attacker may affect
the next weight only if their blocks are exactly the first or the
last block among the last n blocks. When the attacker’s blocks
are only in the middle of the chain, they won’t affect the next
weight at all. Even when the first or the last blocks belong to
the attacker, other blocks in between won’t, and the timestamp
of the blocks must be strictly increasing. This reduces the odds
of a successful attack.

2) Study case: |wi+1 − wi| ≤ A: In this subsection, we
assume that the weight will be updated every block, but limited
to maximum change A, i.e., ∀i ∈ {1, 2, . . . , n} , |wi+1−wi| ≤
A. In this case, the calculation of wn+1 will use the distance
between the previous n blocks.

Let w = log2 (
∑
i 2wi) − log2 n be the average weight.

Then, after some algebra, we got:



E
[∑

i
Ti

]
=
n · 2w

H

V
[∑

i
Ti

]
=
n · 22w

H2

(∑
i 22(wi−w)

n
− 2−w

)
We can prove by induction that |wi+1 −wi| ≤ A⇒ |w1 −

wn| ≤ (n− 1) ·A just applying the triangle inequality (|wi −
wj | ≤ |wi − wk| + |wk − wj |). The equality happens when
wi = w1 + (i− 1)A or wi = w1 − (i− 1)A.

When wi = w1 + (i− 1)A, we have the maximum value of
w. Hence,

w ≤ w1+A(n−1)+log2

(
1− 2−A·n

)
−log2

(
1− 2−A

)
−log2 n

Then,

22(wi−w) ≤
(

2−2A(n−i)
)
· n2 ·

(
1− 2−A

)2
(1− 2−A·n)

2

Finally,

∑
i

22(wi−w) ≤ n2 ·
(
1− 2−2A·n

)
(1− 2−2A)

·
(
1− 2−A

)2
(1− 2−A·n)

2

To simplify the analysis, let’s define γ1(n) and γ2(n) as:

γ1(n) =

(
1− 2−2A·n

)
(1− 2−2A)

·
(
1− 2−A

)2
(1− 2−A·n)

2

γ2(n) = 2−[w1+(n−1)A] ·
(

1− 2−A

1− 2−A·n

)
After applying the central limit theorem and some algebra,

we got: ∑
i ti
n
∈ 2w

H
·
(

1± zα
√
γ1(n)− γ2(n)

)
Let w∗ be the optimal weight where the average time

between blocks is θ. Then, 2w
∗

= H · θ. Replacing in the
confidence interval, we have:

∑
i ti
n
∈ θ · 2w−w

∗
·
(

1± zα
√
γ1(n)− γ2(n)

)
(5)

In this scenario, Ĥ = (n · 2w)/
∑
i ti. Replacing in Equa-

tion 5, we obtain:

Ĥ ∈ 2w
∗

θ
·
(

1± zα
√
γ1(n)− γ2(n)

)−1
(6)

We can apply two approximations: (i) as w ≥ mini wi, and
wi is usually way bigger than 25, 2−w ≈ 0; and (ii) notice that
γ1(n) is strictly decreasing as n increases, and it converges
to a fixed value. In fact, γ1(n) ≈

(
1− 2−A

)2
/
(
1− 2−2A

)
for n ≥ 10. As we used the central limit theorem, we already
have to choose n ≥ 30.

Applying both approximations, we obtain:

Ĥ ∈ 2w
∗

θ
·
(

1± zα
(

1− 2−A√
1− 2−2A

))−1
(7)

It is interesting that n does not affect the confidence interval,
which depends only on the value of A. This confidence interval
assumes the worst case, in which the |wi+1 − wi| = A.

A CI 99%
0.001 (0.9542, 1.0503)
0.010 (0.8683, 1.1787)
0.100 (0.6759, 1.9210)
0.200 (0.5960, 3.1023)
0.300 (0.5467, 5.8524)
0.400 (0.5112, 22.7623)

TABLE II: 99% confidence interval (zα = 2.576) for |wi+1−
wi| ≤ A and n ≥ 10

Table II shows the confidence interval for some values of
A. We can notice that it is very imprecise even for A = 0.4.
In order to have a small interval, we need to use small values
of A. For instance, A = 0.001 means that, after the hash rate
doubled, the weight will only be fully adjusted after 1,000
blocks.

C. Least squares

There are at least three ways to fit the data with minimum
least squares: by ti, by wi, or by E[Xi] = 2wi . From
the theoretical model, Ti = Xi/H , which means E[Ti] =
E[Xi]/H = 2wi/H .

1) Fit by ti: The estimation error is ε21 =
∑
i(ti−2wi/H)2.

Solving dε21/dH = 0, we have:

Ĥ =

∑
i 22wi∑
i ti · 2wi

Notice that if w is constant, i.e., wi = w, then Ĥ = n ·
2w/

∑
i ti which is the same as the Naïve estimator.

2) Fit by E[Xi]: The estimation error is ε22 =
∑
i(2

wi −
H · ti)2.

Solving dε22/dH = 0, we have
∑
i 2(2wi−H ·ti)(−ti) = 0.

Then,

Ĥ =

∑
i ti · 2wi∑
i t

2
i

3) Fit by wi: The estimation error is ε23 =
∑
i(wi−log2 ti−

log2H)2.
Solving dε23/dH = 0, we have

∑
i 2(wi − log2 ti −

log2H)(−1/H) = 0. Then,

log2 Ĥ =

∑
i(wi − log2 ti)

n

Removing the log2, we obtain:

Ĥ =
(∏

i
ti · 2wi

)1/n
= 2w· n

√
t1t2 · · · tn, where w =

∑
i wi
n



D. Maximum likelihood estimator

As P (Xi = k) = (1− pi)k−1 · pi, then:

P (Ti = ti |wi) = P (Xi = H · ti |wi)
= (1− pi)H·ti−1 · pi

Hence,

L = P (t1, t2, . . . , tn|w1, w2, . . . , wn) =

n∏
i=1

P (Ti = ti|wi)

Finally,

logL =

n∑
i=1

[
(H · ti − 1) log(1− 2−wi)− wi log 2

]
Unfortunately, logL does not have any local maximum. So,

it seems that this method does not work.

XI. APPENDIX: WIDTH OF THE DAG

Problem: Let m people randomly choose A different num-
bers from the set [n] = {1, 2, . . . , n}. Let Xi be the chosen
number whereas |Xi| = A. What is the probabilty of exactly k
numbers won’t be chosen by anyone, i.e., P (|[n]−∪mi=1Xi| =
k)?

Let P (n,m, k) be the probability in question for a fixed A.
Then,

Theorem 20.

P (n,m, k) = P (n− 1,m, k − 1) · n
k
·
(
n−A
n

)m

Proof. Let #(n, m, k) be the number of ways m people choose
A numbers such that |[n]−∪mi=1Xi| = k, and #n be the number
of ways m people choose A numbers. So,

P (n,m, k) =
#(n,m, k)

#n

Choose an arbitrary number u from [n], which will be one
of the k non-chosen numbers. Then, remove u from [n] and
let people choose their A numbers such that k − 1 number
won’t be chosen by anyone. Finally, we will have k non-
chosen number—one (u) plus the k−1 non-chosen by people.
Hence, as people have chosen from n− 1 numbers, we have:

#(n,m, k) =
1

k
·
n∑
i=1

#(n−1,m, k−1) =
n

k
·#(n−1,m, k−1)

The factor 1/k is necessary because we are counting the
same set of non-chosen numbers k times. Let {u1, u2, . . . , uk}
be the set of non-chosen numbers. In the sum, we are counting
this set exactly k times, one for each ui removed from [n].

Hence,

P (n,m, k) =
#(n,m, k)

#n
(8)

=
n

k
· #(n− 1,m, k − 1)

#n
(9)

=
n

k
· #(n− 1,m, k − 1)

#n−1
· #n−1

#n
(10)

=
n

k
· P (n− 1,m, k − 1) · #n−1

#n
(11)

Finally, #n =
(
n
A

)m
, and we have:

#n−1
#n

=

[(
n−1
A

)(
n
A

) ]m =

(
n−A
n

)m

Corollary.

P (n,m, k) = P (n− k,m, 0) ·
(
n

k

)
·

[(
n−A
k

)(
n
k

) ]m

Proof. Apply Theorem 20 k times.

Theorem 21.

P (n,m, 0) =

A∑
i=0

P (n,m− 1, i) ·
(
n−i
A−i
)(

n
A

)
Proof. Let’s say that m− 1 people have already chosen their
numbers and exactly i numbers have not been chosen by
anyone. Thus, in order to have all numbers chosen at least
once, the last person must choose all these i numbers among
their A choices. So, applying the law of total probability, we
have:

P (n,m, 0) =

A∑
i=0

P (n,m−1, i)·Pr(mth person chooses all i non-chosen numbers)

Finally, as the last person must choose all i non-chosen
numbers, the last person will choose A− i numbers from the
n− i remaining numbers. Hence,

Pr(mth person chooses all i non-chosen numbers) =

(
n−i
A−i
)(

n
A

)
Corollary.

P (n,m, 0) =

A∑
i=0

P (n− i,m− 1, 0) ·
(
A

i

)
·

[(
n−A
i

)(
n
i

) ]m−1

Therefore, in order to calculate P (n,m, k), we just have to
apply Corollary XI and Theorem 21 multiple times, reducing
to one of the following boundary cases:



• P (n,m, 0) = 1, if n = A and m ≥ 1.
• P (n,m, 0) = 0, if n = A and m = 0.
• P (n,m, k) = 0, if n− k > A ·m or n− k < A.

Algorithm 1 Add transaction v to G

1: function ADDTRANSACTIONTOGRAPH(v)
2: Zv ←

⋃
x|(v,x)∈E Zx

3: if v has conflicts then
4: Zv ← Zv ∪ {v}
5: end if
6: for x ∈ Zv − {v} do
7: RESOLVECONFLICT(x)
8: end for
9: if Zv = {v} then

10: RESOLVECONFLICT(v)
11: end if
12: end function

Algorithm 2 Resolve conflict of v

1: function RESOLVECONFLICT(v)
2: if Zv 6= {v} then
3: return
4: end if
5: A← {x | x conflicts with v ∧ Zx − {x} = ∅}
6: if A = ∅ then
7: MARKASEXECUTED(v)
8: return
9: end if

10: m← maxy∈A{ay}
11: B ← {x ∈ A | ax = m}
12: if av < m then
13: return
14: end if
15: for b ∈ B do
16: MARKASVOIDED(b)
17: end for
18: if av > m then
19: MARKASEXECUTED(v)
20: end if
21: end function



Algorithm 3 Mark as voided

1: function MARKASVOIDED(v)
2: if v ∈ Zv then
3: return
4: end if
5: Zv ← {v}
6: A← {x ∈ V | x v}
7: B ← ∅
8: for x ∈ A do
9: if x has conflicts then

10: if Zx = ∅ then
11: B ← B ∪ {y | y has a conflict with x}
12: end if
13: Zx ← Zx ∪ {x}
14: end if
15: Zx ← Zx ∪ {v}
16: end for
17: for x ∈ B do
18: RESOLVECONFLICT(x)
19: end for
20: end function

Algorithm 4 Mark as executed

1: function MARKASEXECUTED(v)
2: if v /∈ Zv then
3: return
4: end if
5: Zv ← Zv − {v}
6: A← {x ∈ V | x v}
7: for x ∈ A do
8: Zx ← Zx − {v}
9: end for

10: for x ∈ A ∧ Zx = {x} do
11: RESOLVECONFLICT(x)
12: end for
13: end function

Algorithm 5 Add block b to G

function ADDBLOCKTOGRAPH(b)
Zb ←

⋃
(b,x)∈E Zx

for x ∈ Zb do
ax ← log2 (2ax + 2wb)

end for
if b is not connected to the head of the best chain then

Zb ← Zb ∪ {b}
end if
for x ∈ Zb − {b} do

RESOLVECONFLICT(x)
end for
if Zb = {b} then

sb ← CALCULATESCORE(b)
if sb < shead then

return
end if
UNMARKASBESTCHAIN(bhead, b)
if sb > shead then

MARKASBESTCHAIN(b)
end if

end if
end function
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