
GYSR Core v2
June 14, 2021

Devin Conley

GYSR

devin@gysr.io

Alex Koren

GYSR

alex@gysr.io

Iain McCown

GYSR

iain@gysr.io

Ben Roy

GYSR

ben@gysr.io

ABSTRACT
This technical whitepaper introduces GYSR Core v2, which includes

major architectural, functional, and economic improvements to

the protocol. Specifically, it covers the new modular architecture,

enhancements to $GYSR spending economics, and the addition of

a friendly incentive mechanism.

1 INTRODUCTION
GYSR is an open platform for on-chain incentives made up of sev-

eral distinct components. The core staking protocol is a contract

between creators and users to incentivize and reward a particular to-

kenized behavior. The factory contract allows any creator to easily

configure and deploy a staking pool for their own project. Finally,

at the global level, the platform facilitates discovery, investment,

and value flow between projects and users.

GYSR Core v2 [1] introduces many significant improvements

to the GYSR platform. The primary staking pool has been entirely

refactored to use a modular architecture. This allows for more

flexibility and the easy addition of new capabilities. Through this

modular architecture, an entirely new reward mechanism has been

implemented with an emphasis on friendly staking dynamics, ease

of use, and predictable returns. This protocol update also improves

on platform economics through more efficient $GYSR pricing and

the introduction of a global fee system.

2 BACKGROUND
2.1 GYSR Core v1
GYSR v1 [2] is the predecessor to the protocol described in this

paper. It is a configurable system of smart contracts that provides a

general solution for token distribution and incentive programs. This

allows creators to promote useful behaviors by rewarding users

for long-term participation. The protocol includes a native token

$GYSR, which was introduced to further align incentives, act as a

diversified investment asset, and provide a source of continuous

funding for projects.

GYSR v1 was launched on the Ethereum blockchain in October of

2020. Since then, 91 pools have been created for a variety of use cases

including token distribution, promoting liquidity on automated

market makers (AMMs), and enforcing vesting schedules.

One distinguishing feature of GYSR v1 is that staking mechanics

are competitive. The staking contract implements bonus multiplier

mechanics to reward users for long term commitments (time bonus)

and project support ($GYSR bonus). These work by increasing

the user’s share of the reward pool and effectively decreasing the

claimable amount for all other users. Therefore, it is important to be

aware of user activity, funding schedules, and bonus configuration

in order to maximize rewards.

2.2 Upgradeability in DeFi
A common philosophical dilemma when building decentralized

applications is the inherent tradeoff between upgradeability and

security. For a thorough review on the issue, see The State of Smart
Contract Upgrades from OpenZeppelin [3].

A standard smart contract is immutable; the code cannot be

modified after it has been deployed to the blockchain. While this

provides explicit guarantees on functionality, it means that bug

fixes are impossible and new features can never be added.

One approach is to use the upgradeable proxy pattern [4] so that

the underlying implementation logic can be completely swapped

out. This results in a contract that is highly flexible to support

patches and new features. However, this can also introduce signifi-

cant security vulnerabilities through added complexity, increased

attack surface, and privileged points of centralization.

In other instances, projects have simply built a separate product

altogether and focused on promoting migration. Unfortunately, this

is a manual process, and it can both lead to bifurcation of the user

base and cause confusion around which platform to use.

A wide variety of approaches have been taken to address the

issue of upgradeability, and the optimal strategy is dependent on

the nature of the project in question.

2.3 Scalable reward calculations
Another common challenge when building DeFi applications is

achieving efficient bookkeeping that scales to a high number of

users and operations. In the post Scalable Reward Distribution with
Changing Stake Sizes [5], the author describes an incrementalmethod

of accounting that handles variable stake sizes for an arbitrarily

high number of users, operations, and reward events. Further, the

algorithm maintains all earned rewards exactly, even before the

pull-based distribution has occurred.

3 MODULAR ARCHITECTURE
One of the key advancements in GYSR v2 is the introduction of

a modular Pool architecture. With this redesign, the staking logic

and reward logic are each abstracted out into their own contracts,

which are referred to as modules. The Pool contract acts as an

interface, wrapper, and manager for the associated staking and

reward modules. Different combinations of modules can be used to

implement a variety of incentive mechanisms.

This new design results in a highly flexible and extensible system

of smart contracts. Most notably, it allows the GYSR platform to

rapidly innovate and develop new capabilities without compromis-

ing any trust or security guarantees.

3.1 Pool
The Pool contract is the end user’s primary point of interaction. It

handles all information flow and manages interactions with the un-

derlying modules. The contract only exposes a few simple methods

that the end user needs to be aware of.

The references to the reward module, staking module, GYSR to-

ken, and factory contracts are configured at deployment time, and

are immutable beyond that point. This allows the Pool to support

a wide variety of future incentive mechanisms for new deploy-

ments, while ensuring that existing contracts remain immutable

and decentralized.

One notable decision in this version of the Pool contract is that

we diverge from the EIP-900 standard [6]. Unfortunately, the IStak-
ing interface is not sufficient to describe interactions with the new

modular architecture. We did not want to compromise on our de-

sign for the sake of conforming, nor did we want to waste bytecode

on half-functional wrapper methods.

The highly extensible design of GYSR v2 aims to establish a new

common standard. The IPool interface and methods are described

throughout the remainder of this section.

Figure 1: Modular Pool architecture

3.1.1 Stake. The stake method is called by the user to deposit an

amount of a given staking asset into the Pool’s staking module. It

also registers this stake operation with the reward module to allow

relevant accounting to occur.

3.1.2 Unstake. The unstake method is called by the user to with-

draw an amount of a given staking asset from the Pool’s staking

module. It also triggers the rewardmodule to distribute any relevant

rewards a user has earned.

3.1.3 Claim. The claim method is called by the user in order to

receive rewards without unstaking their staked asset.

3.1.4 Withdraw. The withdraw method is called by the controller

of the Pool to collect any accrued $GYSR earnings.

3.1.5 $GYSR processing. The Pool is responsible for the actual

transfer and processing of $GYSR that is used in the reward module.

When a user spends $GYSR for a bonus multiplier, those tokens

are transferred to the Pool contract. Once those tokens have fully

vested, they are eligible for withdrawal. Note that spending and

vesting can occur in the same operation.

3.2 Staking module
The staking module encapsulates and handles all Pool logic deal-

ing with staking assets. This includes token valuation, balance

management, and transfers. Below, we describe the IStakingMod-
ule interface, which any staking module must implement to be

compatible with the modular system.

3.2.1 Stake. The stake method is called by the Pool contract to ex-

ecute the actual deposit of staking assets. It receives a user address,

a token amount, and a flexible bytes parameter for additional data.

It returns an account address to credit along with the number of

shares that the user deposit was worth.

Bookkeeping is done in shares rather than token amounts for

generalization across asset types and to support elastic supply or

interest bearing tokens.

The staking module is given the flexibility to specify a credited

account (rather than just assuming the user) in order to support

a wider variety of staking designs in the future. For example, we

could use this field to implement a staking module which issues

tokenized positions.

3.2.2 Unstake. The unstake method is called by the Pool contract

to execute the withdrawal of staking assets. It receives a user ad-

dress, a token amount, and a flexible bytes parameter for additional

data. It returns an account address along with the number of shares

that should be burned.

3.2.3 Claim. The claim method is called by the Pool contract to

quote the value of tokens, without actually unstaking them. It re-

ceives a user address, a token amount, and a flexible bytes parameter

for additional data. It returns an account address along with the

number of shares that the claim amount is worth.

3.3 Reward module
The reward module encapsulates and handles all Pool logic dealing

with reward assets. This includes funding, $GYSR bonus, reward

calculation, and distribution. Below, we describe the IRewardMod-
ule interface, which any reward module must implement to be

compatible with the modular system.

3.3.1 Stake. The stake method is called by the Pool contract to

perform any relevant bookkeeping for a new stake. It receives an

account address, a user address, the number of newly minted shares,

and a flexible bytes parameter for additional data. It returns the

amount of $GYSR spent and the amount of $GYSR vested during

the operation.

The reward module is responsible for handling $GYSR multiplier

mechanics. This includes reporting the amount of $GYSR consumed

back to the Pool contract in order to do the actual token transfer.

3.3.2 Unstake. The unstake method is called by the Pool contract

to distribute earned rewards and perform any other bookkeeping

for the removed stake. It receives an account address, a user address,

the number of burned shares, and a flexible bytes parameter for

2

additional data. It returns the amount of $GYSR spent and the

amount of $GYSR vested during the operation.

3.3.3 Claim. The claim method is called by the Pool contract to

distribute rewards without burning staked shares. It receives an

account address, a user address, the number of shares claimed

against, and a flexible bytes parameter for additional data. It returns

the amount of $GYSR spent and the amount of $GYSR vested during

the operation.

3.4 Access controls
The module contracts utilize an owner-controller access model to

secure function calls. The owner of the module is the Pool contract

and the controller is the creator of the Pool.

The stake, unstake, claim, clean, and update methods are re-

stricted as owner only. The system is designed such that all core

logic must be orchestrated by the primary Pool contract and can

never be triggered directly.

A module may also designate controller only methods for any

relevant administrative tasks. For example, this might include sup-

plying funding to a reward module.

The owner of a Pool can also transfer ownership or control to

another account. When the control of a Pool is transferred, the

control of the associated modules is transferred as well.

3.5 Factory system
In order to extend the principles of modularity and extensibility to

the Pool factory, we introduce the IModuleFactory interface. This

sub-factory is responsible for the construction of its respective

module and is managed by the primary Pool factory. Each module

factory must be whitelisted by the Pool factory controller before it

can be used.

The Pool factory create method can be called by any user to

configure and deploy a new Pool. The desired module types are

specified by passing the corresponding factory addresses. Addition-

ally, the constructor data for each sub-factory is passed through

a pair of flexible bytes parameters. This primary factory method

calls each module factory and assembles the overall Pool contract.

4 $GYSR SPENDING MECHANICS
GYSR v2 includes various improvements to spending mechanics.

These changes primarily focus on the efficiency of $GYSR pricing

and on platform-level economic improvements.

4.1 Global fee system
Previously, the entire amount of $GYSR spent would go to the

creator of that Pool. While this aligns with our principles of de-

centralization, it neglects a large opportunity to grow the broader

ecosystem and platform.

GYSR v2 introduces a global fee system which sends a small

portion of all $GYSR spent to the protocol treasury. The fee amount

starts at 20% and can be lowered down to zero, but never raised

above 20%. Both the treasury address and the fee amount are set

globally by the factory controller.

This change unlocks a huge number of opportunities to support

ecosystem growth through grant programs, token redistribution,

community contributor rewards, new feature development, etc.

Notably, this fee system also disrupts the circular effect that

can occur when Pool owners immediately sell earned $GYSR back

into the market. By diverting some portion of that spent $GYSR

to productive initiatives, it can improve overall economic stability

and growth of the platform.

4.2 $GYSR multiplier
The $GYSR multiplier is a critical piece of the platform. It facilitates

a mutually beneficial relationship between investors and pool own-

ers. Investors can further increase their returns while proportionally

funding the project for their development efforts.

As a recap from the original paper [2], $GYSR is a universal

multiplier of shares representing other assets. These reward assets

have highly variable value, total supply, and unlocking schedules.

Further, these numerous token markets are completely independent

and unaware of each other. All that said, $GYSR must still converge

to some common market value. This introduces a fairly complex

design problem.

• The multiplier mechanics must be agnostic to the value and

supply of relevant assets

• There must be some natural limitation on the multiplier to

reduce exploitation

• The multiplier must be responsive to meet Pool-specific us-

age

• The multiplier must be resilient to manipulation by bad

actors

The updated multiplier design stays committed to the original

goals, and aims to improve on a few specific focus areas.

• Responsiveness. Increase the responsiveness of the usage ratio
to be more adaptive to changing asset prices and economic

conditions.

• Fairness. Section 6.8 of the original whitepaper [2] describes

the limitation that a $GYSR bonus is applied to the entire

unstake. In v2, we normalize pricing with respect to the size

of the stake.

• Smoothness. Section 6.7 of the original whitepaper [2] de-

scribes the limitation that $GYSR cannot be spent at an

amount between 0 and 1. This limitation is removed.

With the above criteria and goals in mind, the following function

was designed.

Let

𝑥 : number of $GYSR applied to an operation

𝑠 : number of staking shares

𝑆 : total number of staking shares (including 𝑠)

𝑈 : usage ratio of $GYSR within a particular Pool

Note that the value 𝑈 is provided by the underlying reward

module and will differ between module types. See section 5 for a

definition of the usage ratio calculation for each of v2’s original

reward modules.

3

Define the multiplier𝑀𝐺𝑌𝑆𝑅

𝑀GYSR (𝑥, 𝑠, 𝑆,𝑈) = 1 + log
10

(
1 +

0.01·𝑆
𝑠 · 𝑥

0.01 +𝑈

)
(1)

Note that if 𝑠 < 0.01 ·𝑆 , we do not scale the $GYSR input amount

with respect to share amount. The result is a simplified equation of

the following form.

𝑀GYSR (𝑥,𝑈) = 1 + log
10

(
1 + 𝑥

0.01 +𝑈

)
(2)

This value,𝑀GYSR, is used in the reward calculation for each reward

module, as described in Section 5.

Figure 2: $GYSRmultiplier normalized with respect to share
amount

This update achieves the desired improvements through a few

specific changes. By calculating usage at the module level, the value

can be defined with a tailored and responsive equation. The specific

definition for each reward module can be found in section 5.

Additionally, the $GYSR input amount is now normalized with

respect to share amount. This is done by considering 1% of the total

staked shares (0.01 · 𝑆) as a peg and scaling the input (𝑥) inverse

proportionally to the share amount (𝑠). This ensures that the value

of any $GYSR spent remains consistent and fair, even as the staked

amount increases.

Finally, the multiplier equation has been modified to smoothly

handle all $GYSR input amounts greater than or equal to 0. This

includes the 0 to 1 range which was previously restricted.

5 INITIAL MODULES
This section will describe the initial set of modules available imme-

diately with the launch of GYSR v2.

5.1 ERC20 staking module
The ERC20StakingModule implements the IStakingModule interface
as described in section 3.2. This module allows users to deposit an

amount of ERC20 token in exchange for shares credited to their

address. When the user unstakes, the tokens will be returned to the

user and the associated shares will be burned.

5.1.1 Construction. The constructor for thismodule takes an ERC20

staking token address and the module factory address. These two

values are immutable after construction.

5.1.2 Stake. The stake method transfers a specified amount of

ERC20 staking token from the user to the module contract, mints a

proportional number of shares, and updates user and global posi-

tions accordingly. It returns the user address as the credited account

and the associated number of minted staking shares.

5.1.3 Unstake. The unstake method transfers a specified amount

of ERC20 staking token from the module contract back to the user,

burns a proportional number of shares, and updates user and global

positions accordingly. It returns the user address as the account

and the associated number of burned staking shares.

5.1.4 Claim. The claim method returns the proportional share

value for a specified amount of ERC20 staking token without un-

staking. It does not modify the user position or global state.

5.2 ERC20 competitive reward module
The ERC20CompetitiveRewardModule implements the IRewardMod-
ule interface as described in section 3.3. This reward module was

designed to emulate the behavior of the original v1 Geyser contract.

[2]

When a user stakes, they receive credit for the associated number

of shares, and immediately begin to accrue share seconds. Share

seconds are the primary unit of accounting in this module, and they

are burned during reward distribution.

This module distributes a single ERC20 token asset as the reward.

The overall reward amount and rate is fixed, but individual earning

rates can vary based on participation.

The ERC20CompetitiveRewardModule allows users to earn both

a time multiplier and a $GYSR multiplier, which are described in

more detail below. These are applied to the user’s share seconds

when computing their final reward distribution, and allow them

to claim a larger portion of the overall unlocked reward pool. This

naturally introduces a competitive dynamic to the module’s staking

and reward mechanics.

5.2.1 Construction. The constructor for thismodule takes an ERC20

reward token address, the minimum time bonus, the maximum time

bonus, the time bonus period, and themodule factory address. These

values are all immutable after construction.

5.2.2 Fund. The fund method allows the controller to lock up a

supply of the designated ERC20 token to be distributed as a reward.

When a funding operation is executed, the controller will specify

the amount of reward token to deposit, the period over which that

reward will be unlocked, and optionally, a time offset to begin the

unlocking period.

4

The module may be funded multiple times, but there is a hard

limit on the number of active funding schedules. If the limit is

reached, the owner must wait until an older schedule expires before

funding again.

5.2.3 Stake. The stake method creates a new position for the ac-

count, which stores the share amount and the time of staking. This

is used later to compute share seconds, time bonus, and overall

rewards.

5.2.4 Unstake. The unstake method updates the account position

to remove burned shares and distributes the earned reward to the

user.

For each stake, the earned share seconds and time multiplier

is calculated based on the timestamp. Similarly to the Geyser v1

contract, the user can optionally spend $GYSR during the unstake

operation for an additional multiplier. This amount is passed in

through the flexible bytes parameter.

The following equation is used to calculate the earned reward:

ℎ : user share-seconds burned

𝐻 : total share-seconds (including ℎ)

𝑀time : time bonus (defined in section 5.2.7)

𝑀GYSR : $GYSR bonus (defined in section 4.2)

𝐾 : total unlocked rewards

𝑅 = 𝐾 ·
(

𝑀time𝑀GYSR · ℎ
𝐻 − ℎ +𝑀time𝑀GYSR · ℎ

)
(3)

5.2.5 Claim. The claim method is implemented as a wrapped call

to unstake and stake. The optional $GYSR amount is passed in

through the flexible bytes parameter to the unstake method.

5.2.6 $GYSR usage. As discussed in Section 4.2, the usage ratio

should be highly responsive to updated asset pricing and user be-

havior. Some obvious approaches were to compute usage over a

sliding window, defined by a number of operations or by an explicit

time period. Unfortunately, using a set number of operations would

be vulnerable to manipulation by many small transactions. Simi-

larly, a fixed time window can easily be monitored and manipulated

in lower activity Pools.

As a more robust alternative, the portion of total share seconds

burned is used to do a weighted update of the usage ratio. This pro-

vides a much more secure weighting scheme by tying it directly to

claimed rewards, meaning the end user is motivated to act rationally

when selecting an amount of $GYSR to spend.

Previously, the entire reward amount from an unstake with

$GYSR was considered towards the usage ratio. The usage,𝑢, is now

computed on a single transaction based on the portion of additional
rewards that are due to $GYSR spending.

𝑢 =

(
𝑀GYSR − 1

𝑀GYSR

)
(4)

The global usage,𝑈 , is then updated as a rolling weighted mean.

𝑈 = 𝑈𝑙𝑎𝑠𝑡 −
ℎ

𝐻
𝑈𝑙𝑎𝑠𝑡 +

ℎ

𝐻
𝑢 (5)

5.2.7 Time incentive. To incentivize longer-term participation, the

module can be configured to give users a bonus multiplier as a

function of time staked. This time multiplier is earned linearly over

the defined period, and is tracked independently for each stake.

There is no hard limit on the max time bonus, and it can also be

removed entirely by setting both the min and max values to 0.

The time multiplier,𝑀𝑡𝑖𝑚𝑒 is defined below:

𝑏min : minimum time multiplier

𝑏max : maximum time multiplier

𝑏
period

: time bonus period

𝑡 : time staked

𝑀time = 𝑏min +
(
(𝑏max − 𝑏max) · 𝑡)

𝑏
period

)
(6)

Note: when 𝑡 > 𝑏
period

,𝑀time = 𝑏max

5.3 ERC20 friendly reward module
The ERC20FriendlyRewardModule implements the IRewardModule
interface as described in section 3.3. This reward module was de-

signed to facilitate a simpler staking process where earned rewards

can only increase and cannot be negatively impacted by the actions

of others in the Pool.

When a user stakes, they receive credit for the associated number

of shares and begin earning at a rate proportional to their share of

the entire Pool. As stakes are added or removed from a given Pool,

the rate of earnings is adjusted for all stakes in that Pool.

This module distributes a single ERC20 token asset as the reward.

The overall reward amount and rate is fixed, but individual earning

rates can vary based on participation.

The ERC20FriendlyRewardModule allows creators to define a

time-based vesting schedule which enforces a prorated penalty for

early unstaking. It also lets users earn a $GYSR multiplier, which is

applied at staking time so that it can be accounted for predictably.

These are both described in more detail below. It is important to

note that neither mechanic will ever negatively affect the earned

rewards of other users.

5.3.1 Construction. The constructor for thismodule takes an ERC20

reward token address, the initial vesting multiplier [0-1], the vesting

period in seconds, and the module factory address. These values

are all immutable after construction.

5.3.2 Fund. The fund method allows the controller to lock up a

supply of the designated ERC20 token to be distributed as a reward.

When a funding operation is executed, the controller will specify

the amount of reward token to deposit, the period over which that

reward will be unlocked, and optionally a time offset to begin the

unlocking period.

The module may be funded multiple times, but there is a hard

limit on the number of active funding schedules. If the limit is

5

reached, the owner must wait until an older schedule expires before

funding again.

5.3.3 Stake. The stake method creates a new position for the ac-

count. During the stake operation, $GYSR can be applied as a mul-

tiplier on the associated stake amount. Each stake is stored with

the raw shares staked, the rewards per staked share prior to the

stake, $GYSR applied, $GYSR multiplier earned, and the timestamp.

The rewards per staked share and the multiplier are each stored

because they are dependent on the contract values at the time of

stake.

$GYSR spent during the stake operation is not immediately avail-

able for withdrawal by the Pool owner. It is only vested and released

at the time of unstake. This avoids a potential economic vulnerabil-

ity where the same supply of $GYSR could be spent multiple times

in a loop, while still providing value to earlier stakes.

5.3.4 Unstake. The unstake method updates the account position

to remove burned shares and distributes the earned reward to the

user.

For each stake, the raw rewards earned are calculated based on

the number of shares, $GYSR multiplier (from staking), and reward

rate. Then, the vesting coefficient is calculated as a function of

staking time and applied to the raw rewards. Unlike the Geyser

v1 contract and the competitive module, $GYSR cannot be spent

during this unstake operation.

The following equation is used to calculate the earned rewards:

𝑠 : user shares unstaked

𝑀GYSR : $GYSR bonus (defined in section 4.2)

𝑣0 : initial vesting multiplier

𝑡s : time at stake

𝑡u : time at unstake

𝑇 : total vesting period

𝑟s : global rewards per staked share at time of stake

𝑟u : global rewards per staked share at time of unstake

𝑅 =

(
𝑣0 +

𝑡u − 𝑡s
𝑇

· (1 − 𝑣0)
)
· (𝑠 ·𝑀GYSR · (𝑟u − 𝑟s)) (7)

Note that if the time between staking and unstaking is greater

than the total vesting period, the equation is reduced to the follow-

ing:

𝑅 = (𝑠 ·𝑀GYSR · (𝑟u − 𝑟s)) (8)

5.3.5 Claim. The claim method is implemented as a wrapped call

to unstake and stake. The optional $GYSR amount is passed in

through the flexible bytes parameter to the stake method.

5.3.6 $GYSR usage. Similarly to the ERC20CompetitiveRewardModule,
the usage ratio should be highly responsive to updated asset pric-

ing and user behavior. In the ERC20FriendlyRewardModule, usage
is calculated based on the combined $GYSR usage of all currently

active stakes in the Pool. The following usage formula is defined to

represent the portion of total staked shares that comes from $GYSR

multipliers:

𝑆raw : total raw staked shares

𝑆GYSR : total staked shares with $GYSR applied

𝑢 =

(
𝑆GYSR − 𝑆raw

𝑆GYSR

)
(9)

5.3.7 Vesting schedule. The purpose of the vesting schedule is to
incentivize longer-term participation and staking in the Pool. The

vesting schedule is defined by an initial vesting coefficient and

a vesting period. The vesting schedule is the same for the entire

module, but is calculated on a per stake basis.

When a user unstakes, the length of time staked is calculated

and compared to the total vesting period. If the stake was held for

longer than or equal to the vesting period, the stake will receive

a 1.0 coefficient. Otherwise, the coefficient is computed linearly

between the initial vesting coefficient and 1.0 using the following

formula:

𝑣0 : initial vesting coefficient

𝑡s : time at stake

𝑡u : time at unstake

𝑉 =

(
𝑣0 +

𝑡u − 𝑡s
𝑇

· (1 − 𝑣0)
)

(10)

Any unvested rewards will be returned to the pool and dis-

tributed among all other stakers proportionally.

REFERENCES
[1] GYSR. GYSR core. url: https://github.com/gysr-io/core.

[2] Alex Koren and Devin Conley. GYSR Core v1. url: https://www.gysr.io/docs#

whitepaper.

[3] Santiago Palladino. The State of Smart Contract Upgrades. url: https://blog.
openzeppelin.com/the-state-of-smart-contract-upgrades/.

[4] Gabriel Barros and Patrick Gallagher. EIP-1822: Universal Upgradeable Proxy
Standard (UUPS). url: https://eips.ethereum.org/EIPS/eip-1822.

[5] Onur Solmaz. Scalable Reward Distribution with Changing Stake Sizes. url: https:
//solmaz.io/2019/02/24/scalable-reward-changing/.

[6] Dean Eigenmann and Jorge Izquierdo. EIP 900 - Staking. url: https : / / eips .
ethereum.org/EIPS/eip-900.

6

https://github.com/gysr-io/core
https://www.gysr.io/docs#whitepaper
https://www.gysr.io/docs#whitepaper
https://blog.openzeppelin.com/the-state-of-smart-contract-upgrades/
https://blog.openzeppelin.com/the-state-of-smart-contract-upgrades/
https://eips.ethereum.org/EIPS/eip-1822
https://solmaz.io/2019/02/24/scalable-reward-changing/
https://solmaz.io/2019/02/24/scalable-reward-changing/
https://eips.ethereum.org/EIPS/eip-900
https://eips.ethereum.org/EIPS/eip-900

	Abstract
	1 Introduction
	2 Background
	2.1 GYSR Core v1
	2.2 Upgradeability in DeFi
	2.3 Scalable reward calculations

	3 Modular Architecture
	3.1 Pool
	3.2 Staking module
	3.3 Reward module
	3.4 Access controls
	3.5 Factory system

	4 $GYSR spending mechanics
	4.1 Global fee system
	4.2 $GYSR multiplier

	5 Initial modules
	5.1 ERC20 staking module
	5.2 ERC20 competitive reward module
	5.3 ERC20 friendly reward module

