

GraphLinq WhitePaper

graphlinq.io
The automation of decentralized datas monitorization and external executions over

multi-chains applications.
January 24, 2021

Disclaimer
THIS DOCUMENT PROVIDES AN INITIAL SUMMARY OF THE GRAPHLINQ PROJECT.
AS THE PROJECT PROCEEDS, THIS DOCUMENT IS EXPECTED TO EVOLVE OVER
TIME. THE GRAPHLINQ TEAM MAY POST MODIFICATIONS, REVISIONS AND/OR
UPDATED DRAFTS UNTIL THE FINAL DOCUMENT IS PRESENTED PRIOR TO THE
DATE OF THE PUBLIC BETA.

THIS WHITEPAPER SETS FORTH A DESCRIPTION OF THE PLANNED USE OF THE
GRAPHLINQ TOKEN. THIS IS BEING PROVIDED FOR INFORMATION PURPOSES
ONLY AND IS NOT A BINDING LEGAL AGREEMENT. THE GRAPHLINQ BETA WILL BE
GOVERNED BY SEPARATE TERMS & CONDITIONS.

IN THE EVENT OF A CONFLICT BETWEEN THE TERMS & CONDITIONS AND THIS
WHITEPAPER, THE TERMS & CONDITIONS GOVERN. THIS WHITEPAPER IS NOT AN
OFFERING DOCUMENT OR PROSPECTUS, AND IS NOT INTENDED TO PROVIDE THE
BASIS OF ANY INVESTMENT DECISION OR CONTRACT.

Page 1 | GraphLinq Whitepaper | www.graphlinq.io

1. Introduction
1.1 The problem

In the current blockchain world, we have a lack of simple interface and friendly
way to monitor our blockchains and information attached to them, without
having special skills for reading or understanding the blockchain, it’s
complicated to create, or innovate for non-coders users.

Especially with the last major crypto evolutions, we need a lot of new tools to
help and develop the ecosystem within decentralized finance. With the high
cost of running nodes and executing transactions over mitigated or overloaded
networks, we need solutions to read our chains infos efficiently and execute
transactions smartly.

Over the past 10 years we had trouble doing blockchain easily to understand
for users, and fast to build innovative projects, usable quickly in a production
world moving really fast. We need to find multiple ways to create and handle
the network flux of datas from our chains activities, to collect stats, users
information and chain datas.

Similar solutions already exist for automatizing others type of companies, like
creating a website, deploying a blog or a basic application, but for the
crypto-world it all seems ‘complicated’ to get involved in and it’s a major
barrier for a lot of company that could tend to use the blockchain for their
activities.

Page 2 | GraphLinq Whitepaper | www.graphlinq.io

1.2 The Solution

So GraphLinq is here to solve this problem, through an online interface, we
create the ability of generating and mastering your own blockchain datas
without the need of coding experience.

Imagine a platform on which anyone can create his own cryptocurrency with
the least effort, or watch the activity of his smart-contract, generate a bot to
handle subscriptions, or watch an AMM* pair activities, execute trades on
centralized exchange based on decentralized datas, create DEX* arbitrage
automatically through graphs executed on the GraphLinq engine.

With GraphLinq you can generate a set of nodes (blocks) that receive an input
and output to a single/multiple other nodes, so you create with a set of tools
your ‘structure’ of code with a path of execution that will be launched on the
blockchain or the GraphLinq Engine, then you can deploy it on the test net
Engine or the main net Engine, once you tested and want to get in production.

One graph can for example track network pairs activities on Binance and report
stats to webhook, or slacks, discord, telegram, twitter with any conditions you
decide to trigger a possible results of your nodes.

A new way of designing chain applications needs to be thought of, with the
use of protocols like Graph Protocol or ChainLink we are already starting to
see major projects going into that direction.

Page 3 | GraphLinq Whitepaper | www.graphlinq.io

https://www.binance.com/en
https://thegraph.com/
https://chain.link/

1.3 Conclusion & Our Vision

We believe that a lot of the job tasks runned on mainstream crypto projects
can be automated and generated with node graphs, so that the datas can be
listened to, triggered and saved to a safe place accessible for maintaining a
service from an off-chain side.

While creating a way for innovative content creators to exploit the benefit of
blockchains without getting stuck on technical matters, the goal of this way of
thinking is mainly being able to reach all possible audiences on the Internet, to
make the blockchain world accessible to every business.

GraphLinq remove the pain and struggle of chain implementation that can
block new companies in the crypto sphere possibilities of expansions, while
helping to connect on blockchains informations we also can propose to
facilitate execution of centralized trades through API on nodes, bots for socials
networks and even managing your entire asset through multiple graphs.

A graph can be created to watch a token activity, transactions, events and
execute any available node orders type on the engine to send for example
another version of an asset through a different type of chain or execute any
third party, which mean that atomic swap can be made through one or multiple
graphs, same as decentralized exchange, you can store your excess of
information that will have a high cost and latency time on-chain, on the
GraphLinq protocol off-chain base.

Page 4 | GraphLinq Whitepaper | www.graphlinq.io

2. Technicals FOV
2.1 The Engine Perspective

From a coding perspective, the engine is developed and maintained into .net
core 3.1 (known as C# language) which allow for a fast execution and a
cross-compatibility over any exploitation system.

The engine share the state of the differents network streams through his
threads* which are actually graphs running over their own context separated
from their own memory access to any others of the running graphs, then, the
connections streams are shared through singleton* over the entire process to
assure the integrity of the external datas (ethereum, other chains…) and are
shared to every graph running on the engine.

Attributes are attached to and nodes linked to utilities, which means that any
type of node (execution and monitoring) can be implemented quickly as the
community asks for it.
A smart system is used for having the possibility to do interoperability over
different libraries and blockchains through available NuGet* packages.

All the source code and information on the engine is completely open-source
and available on our github, you can decide to run your self hosted GraphLinq
engine, or use ours with the online interface to handle your entire workflow.

Page 5 | GraphLinq Whitepaper | www.graphlinq.io

2.2 Graphs utilizations

All graphs can be created on any developed interface that generate a
comprehensible set of bytes by our engine, all graphs are saved as json*
instructions (nodes) that are compressed into raw bytes, an unique hash is
also linked to your graph execution, which means that you can use this hash
to follow up exactly your graph state and his execution, and manage it.

One graph has a path of execution and a path of instruction parameters, you
need to link both accordly to have the pattern of each one correctly before
deploying your graph. Here is a sample on our development interface of a
graph that watch transaction of a specific ethereum smart contract and send
any new events to a Telegram bot:

The yellow line represents here the execution pattern where the blank lines
are the links parameters between nodes. Through our online interface you can
create your own graph made of all the availables nodes in our
documentations.

Page 6 | GraphLinq Whitepaper | www.graphlinq.io

2.3 Nodes executions fees

Graphs are running without interruption except if you don’t have set cycle,
timer, or network flux streams (ex: connected to an Ethereum connection)
then it will just execute your graph and exit once the output is returned. You
can also schedule for multiple auto runs by a time in the day.

We are running the engine at our cost, maintaining the availability of the
protocol which means that it has a cost of execution for each graph that is
calculated by block price.

All specific block utilisations (EthConnector, TimerNode, HttpNode..) have a
fixed really low cost fee for being executed into a graph that will update over
time as the price of the token does major increases/decreases.

The amount of GraphLinq token used to maintain a graph is then used as fuel
to run the different started graphs, all of the token spent for the running cost
will be burned from the total supply which will reduce the token total amount
with time, we will maintain a fixed level of dollars worth of execution.

The estimated price for the execution of one graph is available through our
online interface, or you can calculate it manually by cumulating all the nodes
prices from your graph and getting it.
We do this to prevent flood or overload of the network and to assure a high
availability of your graph and the GraphLinq protocol.

Page 7 | GraphLinq Whitepaper | www.graphlinq.io

2.4 The GraphLinq Wallet

To use our platform and the engine protocol you need to have a Metamask (or
web3 compatible) wallet loaded on your browser to connect on our web
interface, by signing an unique ethereum transaction, we authenticate your
wallet and authorize it to use the online interface. Once you sign up and that
the session is automatically started into the online application (through JWT*),
you need to get some GLQ token.

Once you have tokens up and ready on your wallet to use, you need to
deposit the amount you want in the specific smart-contract that manages the
cloud balance (it works like any online cloud paid services).
You will be able to withdraw from the contract at any time contacting our API,
minus the execution cost of the graph you already started on the Mainnet
engine.

You can start deploying your graphs on the protocol, the test net engine cost
no fees so it can be tested there for free but have limited possibilities and
activities (as of execution time)

The balance within the smart-contract that handles the execution cost will
automatically use the amount needed to fuel the engine for any graphs
running on the Mainnet, once you stop or pause a graph, you wont get any
cost for saving it into the protocol as long it’s offline.

Page 8 | GraphLinq Whitepaper | www.graphlinq.io

2.5 The architecture

The engine infrastructure is deployed as Kubernetes pods running through
multiple servers based on AWS* clouds, which mean that it runs 24h/24 and
has high availability access and 99.99% uptime.

A rest HTTP API is exposed from all the running engine nodes to accept
incoming requests, to start/stop, deploy or remove a graph, you can manage a
graph on POST request with the hash of your graph and key of your wallet to
access the graph and manage its state.

You also have the possibility to run your own local engine if you want to
manage it fully and handle the server's architecture as your graph execution.
By time GraphLinq will be pushed to go on a fully decentralized way of doing
the engine and transfer the ERC-20 asset to an engine-chain Tendermint
based.

Page 9 | GraphLinq Whitepaper | www.graphlinq.io

https://github.com/tendermint/tendermint
https://github.com/tendermint/tendermint

Conclusion

GraphLinq aims to be the leader in facilitating the way of communicating and
manipulating blockchain datas. It gives people a way to set up their crypto
pipeline and workflow, easily through a fast and easy to use interface.

We are a base team of three software engineers, one community manager
passionate since years on blockchains and we struggled a lot on issues like
reaching information on blockchains, executing simple tasks, doing bot
creation...

Mainly, GraphLinq is made to create, update, and view blockchains datas and
third party like exchanges, but it can be even more than that:
A marketplace for buying and selling your scripted graphs can be developed if
the community has a need for it, a full-chain and so much more features
helping the accessibility of chain information and the deployment of workflows.

At your graphs!

 COPYRIGHT 2021. GRAPHLINQ TEAM ALL RIGHTS RESERVED.

Marks

* AMM: An automated market maker (AMM) is a type of decentralized exchange
(DEX) protocol that relies on a mathematical formula to price assets. Instead of using
an order book like a traditional exchange, assets are priced according to a pricing
algorithm.

* DEX: Decentralized exchanges (DEX) are a type of cryptocurrency exchange
which allows for direct peer-to-peer cryptocurrency transactions to take place online
securely and without the need for an intermediary.

Page 10 | GraphLinq Whitepaper | www.graphlinq.io

https://academy.binance.com/en/glossary/order-book

* THREADS: A thread is the unit of execution within a process. A process can
have anywhere from just one thread to many threads. It helps for multi execution
over a CPU utilization.

* NUGETS: Provides the tools developers need for creating, publishing, and
consuming packages. Most importantly, NuGet maintains a reference list of
packages used in a project and the ability to restore and update those packages
from that list.

* SINGLETON: In software engineering, the singleton pattern is a software
design pattern that restricts the instantiation of a class to one "single" instance. This
is useful when exactly one object is needed to coordinate actions across the system.

* JSON: JavaScript Object Notation (JSON) is a standard text-based format for
representing structured data based on object syntax. It is commonly used for
transmitting data in web applications (e.g., sending some data from the server to the
client, so it can be displayed on a web page, or vice versa).

* AWS: Amazon Web Services is a cloud computing platform that provides
customers with a wide array of cloud services. We can define AWS (Amazon Web
Services) as a secured cloud services platform that offers compute power, database
storage, content delivery and various other functionalities.

* JWT: JSON Web Token (JWT) is an open standard (RFC 7519) that defines a
compact and self-contained way for securely transmitting information between
parties. This information can be verified and trusted because it is digitally signed..

Page 11 | GraphLinq Whitepaper | www.graphlinq.io

