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Abstract

“Great engineering is the art of intelligent compromise” - Dan Watts

The release of Bitcoin and the blockchain technology that powers it has
ushered in an exciting new era for digital currencies and distributed computing,
seemingly bringing into existence what many had thought impossible; a trustless
decentralised currency. However like many great inventions in the past, this
progress was achieved not by breaking any rules of nature or limitations that
people imagined stood in the way, but rather by taking a long hard look at the
requirements and then coming up with a clever new compromise.

Most inventions of any significance contain many compromises and Bitcoin is
no exception, as with most groundbreaking new systems, it would be naive and
unrealistic to expect that the first iteration would get everything 100% right. It
stands to reason that there is room for improvement.

It has been over 12 years since Bitcoin burst onto the scene and numerous
competitors have since come and gone, some of them bringing some minor im-
provements to the table, but overall very little meaningful progress has been
achieved in core areas. It is my belief that a sober and proper reflection on the
current shortcomings, as well as real solutions to some of them are necessary, or
this promising new technology may easily falter while still in its infancy. This
article attempts to pinpoint what I believe are the shortfalls and compromises
of current blockchain technology, and analyse them in search of ways to improve
the system, with the goal of implementing these improvements in our virtual
currency Florin.

Keywords: Blockchain, Florin, Bitcoin, Distributed consensus, Hashcash,
Proof of Stake, Proof of Work, PoW?

1. Introduction to the blockchain

The blockchain represents, to date, the best (partial) solution to a very
complex problem known in computer science as trustless distributed consen-
sus. Perfect trustless distributed consensus would be the ability for multiple
computers to agree on and keep record of an order of events/information, in a
manner that is permanent (cannot be tampered with or forged after the fact)



but without having a central authority in the system that decides on or controls
this order, where all peers in the system are essentially equal and none of them
have any special control over the system.

The blockchain is not a perfect trustless distributed system, but it is a trust-
less distributed system. It achieves this compromise by relaxing one of the cri-
teria slightly, namely instead of history being 100% incorruptible/unforgeable
it settles instead for a history that would be incredibly difficult to tamper with
or forge with the assumption that when applied to a monetary system this re-
quirement is sufficient. I will touch more on this later in the paper, first I want
to focus on the great benefits that this allows:

1. No centralized point of failure, there is no single piece of infrastructure
that can be taken down that can cause an interruption of service or a loss
of history. Traditional alternatives are very susceptible to this, and we
have seen numerous cases in history of banks losing peoples transaction
history or e.g. of the Visa network going down and being temporarily
unusable.

2. No centralized control, nobody can control the network and tell it what to
do, everyone must play by the same rules. This eliminated the possibility
for corruption and embezzlement that has plagued the banking industry
in the past.

3. No oversight required — In most countries today it is not possible to open
a new bank or payment service without complying to mountains of le-
gal requirements and oversight from government, and not without good
reason. Without such oversight the central authority can easily make off
with everyone’s money'. Due to (1) and (2), a blockchain based service
bypasses the need for all this legislation, allowing for services to be rolled
out internationally, faster and cheaper.

While blockchains are certainly not limited to payment systems, or currencies,
and there has been of late many attempts to use the same concept for numerous
other use cases, this paper is written from the perspective of Florin a digital
currency and therefore everything that follows is in the specific context of de-
centralised virtual currencies and specifically Florin, and should therefore be
read as such.

2. The problems

Unfortunately? current blockchain implementations fall short of the ideal
that people would like from them, or the expectations that people have from a
currency and what they expect such a currency to offer. Some of these problems

INot an uncommon thing when one looks for instance at pension funds, and even with the
oversight this can still be a problem.

2As with most new technologies in their first incarnations, or indeed even most established
technologies.
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have already become visible/obvious to the public on larger currencies like Bit-
coin and some of them may only become obvious at a later date®. Many of these
problems are inherent or a side effect of the distributed nature of a blockchain
and therefore may at best be mitigated, while others are only limitations of the
initial implementations and could potentially be overcome. The first step of
course is to identify these problems. Below is not a comprehensive list of all
possible problems, but a list of problems that the Florin team considers to be
the most important to look at, at this point in time.

2.1. Double spends
A simplified description of how this works:

1. The attacker creates a transaction T; that sends funds to recipient Rthe
‘target’ of the attack.

2. He creates a second transaction Tothat sends the same funds to a different
recipient Ry

3. T, is revealed first to the network, the recipient becomes aware of the
transaction and acts upon the receipt assuming that the attacker has made
payment and everything is in order.

4. However, T5 is then also revealed to the network by the attacker.

5. The network can only accept T; or T as valid but not both, by ensuring
that the network accepts T»® instead of T; the attacker has effectively
stolen from the original recipient.

In an ideal payment system this would not be possible, however this is unfor-
tunately one of the side-effects that the decentralized nature of the blockchain
brings. Some more in depth analysis on the subject can be found in Rosenfeld
[12]

2.1.1. Zero-conf double spend

The zero-conf double spend is the easiest way to perform a double spend. It
is the easiest/cheapest attack to perform in terms of technology, but the hardest
in terms of finding a victim. The victim will know relatively soon® that they
have potentially been ripped off by an attacker, so the attacker would have to
exercise some caution in how/where they did such an attack” in order to be able
to make an escape without being captured.

3As the number of users grow and/or the blockchain or transaction numbers on it grow
scaling problems may become more obvious to end users

4Most likely, but not necessarily, an address under his own control.

5The exact mechanisms at play here differ slightly depending on whether we are attacking
a 0-conf transaction or one that has already entered the blockchain, more information on the
various methods in the subsections that follow.

6Straight after the next block is mined, or even as soon as the conflicting transaction reaches
them.

7Online targets like exchanges are ideal targets if they are foolish enough to accept 0-conf.
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Essentially it relies on finding a merchant who accepts transactions before
they have even entered a block in the blockchain. It is then possible to double
spend simply by either (a) Mining the next block yourself (b) Convincing a
miner of the next block to include your second malicious transaction instead
of the first transaction — this could be done by paying the miner, by putting a
higher fee on the malicious transaction, by luck, or by various other means.

The reality is that zero-conf transactions are completely unsafe for various
use cases (The exception being cases where the merchant is capable of physically
tracking down any double spenders and prosecuting — for instance). The general
reaction to this is to place the blame on the merchants and to claim that further
education can solve the issue. While this is valid to an extent, the reality is that
many merchants will continue to accept zero-conf even after being educated as
their business model simply can’t tolerate waiting long periods of time for even
a single conf.

The inevitable losses that such businesses make once somebody manages to
rip them off are harmful to the ecosystem as a whole and ideally need to be
stopped.

2.1.2. Short chain double spend

This is the most feasible attack for an attacker with more funds, in terms
of finding victims etc. The attacker makes a payment and waits for it to be
included in a block, he then immediately begins mining a private side chain
that has his second conflicting transaction in instead. He carries on mining (at
a faster rate than the main network) until he is ahead of the main network,
has received the goods from the merchant and is confident of his escape, at
which point he unleashes his longer chain. If a merchant accepts 1-conf, then
an attacker needs to mine 2 blocks in a row to pull this off. For 2-conf, 3 blocks
etc. This is why it is recommended that people wait for 7 confirmations — which
makes an attack with anything less than 30% hash rate unlikely — and usually
would require >50%. However 7 confirmations is a long time period and as
discussed above this is a huge problem for merchants. The reality is that the
vast majority of merchants are working on 1-conf. The chances of success here
are determined by how much hash power the attacker has, how many blocks he
needs to make and an element of luck. By obtaining >50% hash rate (>50%
attack) he can almost be guaranteed of success, however attacks with lower hash
rate can also be done.

This is particularly a large problem for newer coins, especially in their infancy
— as they don’t have the luxury of being first, if they share a hashing algorithm
with a larger coin a >50% attack against them is much more feasible. As
most of the ‘good’ algorithm choice are already taken and because there is
now more interest in the sector, picking or creating a new algorithm does not
automatically protect against this either. Bitcoin and other early coins in their
infancy essentially relied on or benefitted from the fact that nobody actually
wanted to attack them at that point in time, which helped to defend them
from this weakness. As new virtual currencies now enjoy much more attention
than before and face much more competition with slower growth, they do not



2.2 >50% attacks 5

have the same luxury. For younger virtual currencies like Florin a more viable
solution is needed here than to pretend that everything is okay and hope that
we grow past the point where it is an issue.

2.1.3. Long chain double spend

These are the most expensive, and easiest to defend against, so we won’t
deal with them much in this paper. Essentially this is the same as a short
chain spend, except over a much longer period of time, a day, a month or even
all the way back to the start of the coin. Because of the long periods of time
involved these are the most costly to pull off however they would be completely
devastating to the coin in question if they were to happen. Fortunately these
are relatively easy to defend against and are notably one of the exceptions where
the bitcoin team has conceded that some decentralization is good. By having
checkpoints (basically snapshots of the blockchain) built into each wallet release
certain blocks that are expected to be present are hard-coded. This prevents
an attack from before the last checkpoint. Various other defenses are possible,
some of them with some downsides of their own (e.g. 3.7).

2.2. >50% attacks

The largest attack vector against a blockchain is the >50% attack, if an
attacker can gain >50% or more of the networks hash rate then this gives him
various capabilities. A brief description of some of these below, most of them
are discussed in more detail in their own section.

e Censorship; The attacker can deny specific transactions access into the
blockchain by not mining or acknowledging any blocks that contain the
transaction.

e Denial of service; The attacker can mine empty blocks (2.7.2) thereby
denying service to the network.

e Double spend; The attacker can out mine the network with relative ease
and thus execute double spends (2.1) at will.

Thus it is relied upon that at all times obtaining 50% or more® of the hash
rate should be difficult or impossible to achieve. For Bitcoin which is the most
famous and largest blockchain based currency this is easy to achieve but for
other newer coins this can be difficult.

2.8. Selfish mining

When a miner mines a block, it is generally assumed that he will immediately
broadcast it to the network as this is how honest nodes operate. However there
isn’t really any such restriction, he can delay broadcasting it to the network for

8 Actually even as much as 30% can be a problem after factors like selfish mining are taken
into account.
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as long as he wishes?, but he can immediately start mining a second block that
refers to the currently found block even though he has not broadcast it yet. This
process is known as selfish mining, in the simplest of cases it can be used by a
large miner to gain a slight advantage, by delaying broadcast of all blocks found
by even a few seconds a miner increases his chances of finding blocks compared
to the rest of the network. However this can also be abused in more sinister
ways'" — a miner with approximately 33% hash rate engaging in selfish mining
could in theory (with a bit of luck) obtain enough advantage to execute a >50%
attack i.e. a >50% attack does not necessarily actually require >50% of the
hash rate. Eyal and Sirer [9] Garay et al. [10]

2.4. Side chains

Related to the above, it is possible for a miner to mine multiple blocks in
secret without sharing it with the network. As such he can work on an attack in
private with no risk of being exposed should the attack fail, only once his side
chain is already a successful side chain'!, it is then shared with the network at
which point it is too late for anyone to do much about it. This characteristic
can be utilised by those wishing to perform double spends.

2.5. Centralisation of mining

Real world experience has shown that over time the mining of blocks con-
centrates more and more toward a small number of individuals or pools. This
weakens several parts of the system making it easier to attack.

Examples include:

1. DDoS against larger mining pools in order to gain a temporary >50%
advantage to execute a double spend (or simply to cause problems for the
coin)

2. Malicious pools — These can mine empty blocks (discussed in Denial of
Service), aid people with double spends or cause various other problems
for the network.

3. Jump pools — discussed in more detail below (Erratic block times)

2.6. Erratic block times

2.6.1. Block target

For various reasons'? block intervals can be very erratic. Though ideally a
block is meant to come in once every 2.5 minutes'? in reality they often come
in much quicker or slower than this. It is not unusual for smaller coins to
see five blocks come in the space of a few seconds and then the next block to

9The only restriction being that somebody else might get a block out first.

10 A ’side-chain’ for the purposes of a >50% attack is really in a way just a specialised form
of selfish mining.

1 One that is larger than the main chain.

12Brief details in the subsections below.

13For Florin 2.5 minutes, 10 minutes for Bitcoin.
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take 20 minutes, or an hour. This is at best a major inconvenience for new
users and a huge cause of support queries. Worse it can be a show stopper for
some merchants to accept the currency as waiting this long for safe transfer of
funds just won’t work for them, and in the absolute worst case this becomes an
incentive for merchants to turn to accepting 0-conf transactions.'?

2.6.2. Inaccurate block times

As a result of decentralisation, there is no real way to enforce accurate times
on blocks. While it’s possible to restrict blocks coming from the future!® the
same cannot be done in reverse, it is not possible to restrict blocks with a
timestamp in the past via a hard limit. The only restriction here is that the
median of the timestamp of the last 11 blocks should always increment. This
allows a lot of room for miners to mess around with the timestamp when mining
a block, which might be done for one of several reasons:

e Machine genuinely has the wrong time.

e In hopes of gaining more money by tricking the targeting algorithm into
yielding easier blocks.

e As part of a malicious attack on the system. For example a time-warp
attack that allows a miner to mine an abnormally large amount of blocks
in an abnormally short amount of time by tampering with the timestamps.

e As a result of the miner engaging in selfish mining.

It is possible to tighten up the forward drift allowance quite a bit and Florin
already has,'® but ultimately this only limits the inaccuracy of the timestamps
a little bit it doesn’t solve the problem.

2.6.3. "Jump’ pools

Newer coins that are starting out, and that do not have a unique hashing
algorithm!” there is the added problem that a lot of miners will constantly
switch their miners between coins to further maximise their mining profit. This
can and does lead to situations where the hash rate suddenly spikes and/or
drops drastically and the next block'® can take a much longer time to come in
as a result.

MWhich are provably unsafe and ultimately a sad story waiting to happen.

15Bitcoin clients reject any blocks that have a timestamp more than 2 hours in the future.

16 Timestamp is limited to 1 minute forward from current time, and median of the last 3
blocks.

17Which brings with its own unique problems that we will discuss later in the paper.

180r blocks if the difficulty algorithm is slow to adjust.
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2.7. Transaction capacity limitation

2.7.1. Block size limit

The system has an inherent limit on how many transactions it can process.
Each block is only allowed to be a certain size'® and the difficulty adjusted
so they come in at a fixed interval?® 2! leading to an overall limit on how
many transactions can actually fit into the blockchain in a given time period.
If the limit is exceeded transactions may take very long before they enter the
blockchain which can lead to difficulties for users. There has been a lot of
press coverage on this over the last few years for Bitcoin where this has become
quite a regular occurrence. There has been quite some fighting/controversy over
what to do about it see: BitcoinWiki [3]. While the target interval and block
size limit can both be adjusted to some extent there is a hard limit imposed
by the infrastructure on which the network operates that cannot be exceeded,
attempting to allow larger blocks than this limit can be catastrophic for the
network. Decker and Wattenhofer [7]

2.7.2. Denial of service/empty blocks

Another factor, that is strangely mostly overlooked in all the debates over is
the fact that there is no minimum block size. That is miners can mine an empty
block or a block with a single transaction in it, even if there are thousands or
hundreds of thousands of "uncleared’ transactions waiting in the system to enter
a block. This is not just an implementation detail, but rather a part of how
the system works, setting a minimum number of transactions per block is not
something that could be properly enforced, and even if it could miners could
just generate transactions of their own to meet the minimum. A few reasons
miners might mine empty blocks:

o To attack the system, hold it ransom, or otherwise make a political state-
ment.

o To gain a mining advantage.??

Even at the worst points where over 170 000 unconfirmed transactions were
pending on the network, some miners were still mining completely empty blocks
blockchain.info [4, 5]. As long as miners can do this there is the possibility that
service can be denied simply by mining empty blocks. While there were some
arguments in the past that the network could just refuse empty blocks (for
instance) the reality is that this is problematic as it opens up other possible
ways to attack the network. What is certain is that any coin that is to scale
larger and succeed in the long term needs to address this design flaw.

19For Florin/Bitcoin 1Mb.

200n average, it is impossible of course for them actually to come at a fixed interval.

21For Florin every 2.5 minutes, for Bitcoin every 10 minutes.

22There is a small but not negligible speed /resource advantage to be had for miners who do
not add any transactions to their blocks.
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2.8. Sybil attack

If an attacker can surround another target node with only nodes he controls
then he can prevent the target node from seeing the true blockchain, and feed
only a blockchain of his own to the target. This, however, is more something for
people who implement blockchain based systems to be aware of, rather than a
serious underlying issue with blockchains themselves. More in depth information
on the concept can be obtained in the following paper: Douceur [§]

2.9. Stalled blockchain

There exists the possibility for a blockchain to stall, if the difficulty is driven
up too high, followed by a sudden absence of miners the existing miners may
struggle or even completely fail to find new blocks. The effect of this can range
from a major inconvenience in the best case, to a death spiral of the currency
in the worst case.

3. What has been tried so far, and how it has failed

Various attempts?® have been made by various virtual currencies in an at-
tempt to solve some of the above problems. There is no time or space, nor is
it necessarily productive to enumerate or talk about all of these, but the ones
that we consider more relevant are briefly discussed below. Note that this is
intentionally kept brief, that is a lot of details are simplified and/or intention-
ally left out as they are not deemed relevant to this paper, so the below is not
comprehensive and should not be read as such.

3.1. Alternative hashing algorithms

A relatively common idea in the virtual currency world?* is to use a different
or new hashing algorithm.?> The idea is that by having a unique algorithm that
no other virtual currency has used before you are no longer susceptible to 2.6.3
and that because all hash rate for this algorithm is pointed at your coin?® >50%
attacks are harder to execute as there is not a large surplus of hash rate that
can easily be rented or bought.

This, of course, does hold true to an extent, as can be seen with Litecoin
which initially introduced the Scrypt algorithm, and though there have been
multiple other coins released since that also use Scrypt it has managed for now
to retain enough dominance on Scrypt hash rate that a >50% attack would?”
be incredibly expensive to pull off.

23Some better thought out and implemented than others, which might be said to be more
based on wishful thinking than any sound reasoning.

24Perhaps because of how easy it is to do, and how easy it is to market at people with little
understanding as if it is a big change.

25As the pool of suitable hashing algorithms in the computing world is rather small, this
often means inventing a new algorithm, a process that is difficult to do correctly.

260y at least this is what people like to think.

27 As with bitcoin itself.
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However, the exception does not prove the rule, Litecoin was one of the
earliest virtual currencies to fork from Bitcoin and managed to gain a large
market share/value and hash rate before virtual currencies became as well known
as they are now, and before they were as well researched as they are now. When
Litecoin was in its infancy there were fewer people with the knowledge required
to execute a >50% attack and less financial motivation to do so as there was a
lot less capital being thrown around. This ’early mover’ advantage, therefore,
means that the same can’t necessarily work for other virtual currencies, and real
world experience has shown that indeed for most it doesn’t.

There are several other problems that a new algorithm brings which need to
be considered:

e The pool of existing hashing algorithms that have been verified to be
randomly distributed and secure is small and almost all if not all of them
have already been used by one or more coins.

o If picking an existing hashing algorithm from existing computer science
literature that is not yet used for hashcash (Back [1]) based virtual cur-
rencies?® it is impossible to know for sure how much existing hash power
is out there. A virtual currency could have 1000 users mining using CPUs
or GPUs with users all under the belief that their funds are secure, mean-
while an attacker who has secretly obtained an ASIC, FGPA or botnet
could out mine them all with ease and perform one or multiple attacks.
The only way to ensure this does not happen is to develop ASICs espe-
cially for the virtual currency as rapidly as possible — something which is
a huge expense and impractical for most coins.

o If inventing a brand new algorithm, the new algorithm could have flaws
that can be exploited. If the hash is not completely randomly/evenly
distributed for example an attacker could manipulate the input blocks to
gain an advantage. If a flaw were found an attacker could exploit it to
hash at a significantly faster rate than anyone else. To make a new hashing
algorithm that is proven to be reasonably secure and randomly distributed
in a proper way is a huge undertaking one that usually involved multiple
experts over a large period of time??; it is something out of the reach of
most if not all virtual currencies in terms of budget and practicality.

3.2. Alteration of block target

Another very common idea that is seen among virtual currencies is the idea
of using a faster block target than that of Bitcoin which is 10 minutes. There
are two main arguments that are usually given for this:

1. Assuming the same block size limit more transactions per second can be
processed if blocks occur more frequently. Allegedly solving 2.7.

283keincoin, Qubitcoin etc.
29Usually done in a competition format involving peer reviews from multiple experts.
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2. The average time a user has to wait to have their transaction confirmed
is lower if blocks come in more frequently.

These arguments do hold true to an extent, the faster a user’s transaction enters
a block the less likely users/merchants are to resort to trusting 0-conf transac-
tions. A 1 Mb block every 2.5 minutes instead of every 10 minutes does imply
four times the transaction capacity limit. However, there are limitations to how
far this can be pushed; a 1 Mb block takes a certain amount of time to propa-
gate to all nodes on the network based on latency between the nodes, the time
it takes to verify the block before it can be passed on, and the time it takes to
transfer the 1 Mb of data. This time fluctuates depending on the CPU speed of
nodes, the bandwidth between nodes, the number of nodes in the network and
various other factors. More in-depth analysis Decker and Wattenhofer [7].

Long block propagation times can have very negative consequences for the
network; in the best case it can lead to a higher orphan/fork rate which in
turn can lead to a centralisation of mining with likelihood of this increasing as
the propagation time rises, in the worst case the propagation time can start
to exceed the block target at which point the entire decentralised network can
begin to splinter and consensus breaks down. A comfortable margin should be
allowed so that on occasions where the network operates slower than normal
problems do not occur as a result.

More frequent blocks also mean a lower difficulty target per block and there-
fore lower security per block, combined with the increase in forking this means
the number of confirms users should wait for is much more than the recom-
mended 53° that users should usually wait for a Bitcoin transaction.

Another side effect with faster block times is the increased overhead of all
the extra header data. While it sounds like a small thing the size of a few million
headers quickly starts to add up and bloats the blockchain size, this can have
a very negative impact on mobile SPV wallet users that have to fetch all the
headers. It can also have an impact on people trying to use full nodes as more
hard-drive space is required and a longer chain download, inevitably this means
less full nodes are available which in turn has further detrimental effects on the
network.

Sadly many virtual currency authors' have opted for faster block targets
than this, as it makes for a good story to sell and good press if their currency can
make claims such as “We can handle as many transactions per second as Visa”,
what adds to this problem is that the problems are not immediately obvious to
users, as long as the network only receives a small amount of transactions per
block?? the propagation times will remain fast so it will appear as if everything
works fine. Only later on in the currencies life if/when the transaction volume
grows will it be revealed that the claims are essentially bogus.

300r 7 depending on who you ask.

31Either out of a lack of deep understanding of the problems involved, or for more nefarious
reasons of deception.

32Which is the case for most virtual currencies other than Bitcoin.
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This is not to say that 10 minutes is the optimal time and that there is no
room for changes at all, Florin operates with a 5-minute target which is a good
compromise. 5 minutes gives a faster 1-conf and more regular confirms without
massively increasing the number of confirms a user should wait for and leaving
enough room that propagation times and other issues that come into play with
overly short block times should not become an issue.

8.8. Proof of stake

A popular solution that many virtual currencies have switched to is proof of
stake. Proof of stake is similar to 3.1 in that it replaces the hash algorithm with
a different one, however it goes one step further and instead of relying solely
on raw compute power instead involves unspent outputs as part of the hashing
process. i.e. in order to mine a miner needs to own a certain amount of coins
for the currency in question, with the chances of successfully mining a block
altered in some way by the quantity of coins and sometimes other factors.??

On the surface this sounds like a fantastic solution, a few of the supposed
benefits:

o An attacker would need >50% of all staking coins instead of >50% of
computing power to perform an attack.

e An attacker is disincentivised from attacking, as why would you attack a
coin in which you hold a significant stake.

e More energy efficient.

o Currency is controlled by people with a vested interest in it’s health instead
of miners that only want profit.

However upon closer inspection, it becomes apparent that this is not as good as
it sounds. Not all of these claimed benefits hold up to scrutiny and PoS suffers
from various new problems of its own. Some of the major ones are addressed
below.

3.3.1. The ’unlocked wallet’ problem

A problem that most PoS implementations face is that in order to stake
the private key is needed, thus the majority of PoS wallets allow (or require)
the user to leave their wallet in an unlocked state with all private keys sitting
unencrypted in memory. This makes users of PoS coins more susceptible to
attack and theft of coins via remote exploit®® as well as trojans/malware etc.

33The age of the coins commonly plays a role.
348SL heartbleed style attack for instance.
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3.3.2. The ‘nothing at stake’ problem

PoS has a potential flaw that has been described as the 'nothing at stake’
problem, it is commonly misunderstood and therefore many think it is a myth.
Sadly this is not true. In essence the problem is as follows:

o Distributed consensus has no real concept of 'the present’ only a chain that
constantly moves forwards with each new block representing a step forward
in time, it relies on the concept of work to move the chain forward in a
manner that emulates time, unlike the real world in the virtual blockchain
world it is possible to go back into the ’past’ and rewrite history, by
creating a new different chain that consists of more work than the original.

« Ignoring various possible flaws/attacks® this works because miners use up
real world3® resources in order to build the chain, to build a new attack
chain would also require real world resources and if the attack were to
succeed the miners who built the first chain would lose the value they
earned in exchange for the resources they expended.

e PoS, on the other hand, makes use of virtual resources to secure the chain,
building a second chain®” can be done with the exact same resources that
built the first chain, if the second chain succeeds the miners who mined
the first chain only stand to lose the profit they made but their resources
are still there, nothing has been expended. And this is where the phrase
“nothing at stake” comes from.

e Due to this there is very little incentive to stop even honest miners from
mining on multiple chains, and for attackers the incentive is of course even
greater.

3.3.3. Bribing

Due to 3.3.2 it becomes possible3® for an attacker to bribe otherwise "honest’
miners to participate in their attacks, by paying the miners a slightly higher fee
than they would earn otherwise.

3.3.4. Stake grinding

There are many different ways to implement PoS3?, however one thing that
they have in common is that there needs to be a selection process or competition
process via which the person or people 'mining’ each block is selected, as this
process needs to take place in a deterministic and distributed way it must draw
on the blockchain history in some way to determine this. The two common
implementation methods are:

35Which we discuss elsewhere e.g. >50% attack.

36Where time travel is not yet possible.

370r even a multitude of chains.

38 At least in theory, though there may be some hurdles in practice.

39Many of them frustratingly complex making them difficult to properly analyse, in what
amounts to ’security by obscurity’
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1. Select eligible miners via a deterministic ’lottery’ like algorithm, where the
blockchain acts as 'random’ entropy and a winner (or winners) is selected
using an algorithm based on this entropy.

2. Let eligible miners compete to mine a hash for the block, in a regular PoW
like manner, with their stake giving them a ’discount’ on the difficulty of
the hash that they need to find.

This process becomes the obvious point for an attacker to try and find an
exploit or advantage. Stake grinding is one such flaw, which works as follows,
an attacker uses processing power to repeatedly alter/generate a vast amount of
"alternate’ histories going back one or more blocks, until he finds one for which
his stake will win more often, an attacker can generate multiple alternate chains
in this manner for ’free’ limited only by his processing power. At worst if one
party does this it allows that party the potential to gain a huge advantage and
thereby attack the chain if he desires, at best all miners do this and the PoS has
now essentially degenerated into a somewhat difficult to use and erratic PoW
that is at best ’as good’ as PoW but realistically worse as it is not designed to
operate in this manner.

3.3.5. Quantity of staking coins

An attacker only needs >50% of currently staking coins, not >50% of all
coins in the network, it is impossible to tell how many coins are actually available
for staking and thus impossible to tell how hard it is for someone to get >50%.
Due to 3.3.1 many users don’t stake or stake erratically reducing the overall
security of the coin as a whole.

3.3.6. Use of old private keys

Related to 3.3.2 is the problem?’, that the private keys of wallets now hold
value even after the wallet is emptied. To use an example, assume I have the
private key for address x, I put 1000000 coins into this address and leave them
there for two weeks, I then send them to an exchange where I swap them for
Euros. The assumption at this point is that the account is empty, therefore I
can no longer stake using it as the coins no longer belong to me but the recipient
of the transaction.

Unfortunately this is only half true, while in the present the account is empty
in the past it is not; therefore an attacker can, after selling his coins for Euros,
rewind the chain to a point where he still owned the coins and proceed to try
stake a new longer chain, one in which the sale of the coins never takes place...
An attacker might use 3.3.3 or 3.3.4 to further aid his chance of success in this
case.

The worst part, however, is that it need not even be the attackers own
coins as in the above example, people tend to be careless with the security of

400nce again revolving around time which is an important and difficult issue in distributed
computing.
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things that they are no longer using, and also are unlikely to understand or
care that their empty accounts may still have a value to an attacker; as such
they are unlikely to maintain proper security or erase old wallet copies that held
money in the past but are now empty. If an attacker can gain access to such
a wallet*! they can use this to perform an attack while expending almost no
upfront resources of their own.

8.8.7. Stake build up attack

Most PoS algorithms implement a concept called ’coin age’ whereby the
longer an output has gone unspent the larger its staking weight becomes, the
reason that this is usually done is:

1. As a claim that this solves 3.3.2 because ’coin age’ is now the ’something
at stake’ - these claims are however dubious.

2. As a claim that this makes mining more fair in that people with fewer
coins have a larger chance of eventually staking, thereby allegedly avoiding
a situation of ’centralisation’ whereby the ’'rich’ generate more income by
staking and eventually come to dominate all coins as a result.

3. So that users can only log in occasionally to stake instead of trying to
work constantly, working around the problem described here: 3.3.1

Unfortunately while ’coin age’ sounds like a nice idea, and some of the stated
benefits are nice, it introduces an unexpected flaw into the system. It is worth
remembering that in order to perform a >50% attack an attacker does not need
to out mine the system on a constant basis, but only for a period of time long
enough to carry out the attack, if an attacker who ordinarily would only have
10% of the hash can temporarily somehow gain a larger weight he can perform
an attack regardless. Coin age unfortunately allows exactly this, by carefully
creating several addresses and then leaving the coins in them to build up weight
an attacker can slowly ’build up’ his attack capacity and then wait for the right
moment to attack.

A second possible problem with coin age*? is that users are deterred from
using their money as if they do they lose their coin age and thus cannot stake,
it is often argued that this leads to a situation whereby all users of a PoS coin
"hoard’ their coins leading to poor liquidity, poor distribution and ultimately an
undesirable currency.

3.3.8. Problems with SPV wallets

Another relatively large problem with PoS is that it is not possible to verify
the validity of a block without the full chain history. The chain history is re-
quired to see if the stakers signature is actually valid and/or eligible to be the

41Tn the worst case the old wallet of a large exchange for instance.
42Not specifically a technical problem but an economic one, however in the case of
blockchains the two overlap.
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winning one. This has the side effect that SPV wallets, the wallet implemen-
tation used by most lightweight mobile wallets can not be used in conjunction
with PoS. In order to have functioning mobile wallets for a PoS based coin it is
necessary to make use of 3.7 and/or other potentially not desirable trade-offs.

3.4. Combined PoS/PoW

Some coins like Peercoin — combine PoS and PoW — the theory being that
this makes the coin twice as secure. However, in reality, this doesn’t hold true,
the problem is that the PoW and PoS miners are competing with each other
to generate blocks.*3 This, in turn, means more orphans and fewer profits for
miners, which means reduced hash rate. This at best means the gains are much
less than expected and at worst means that it actually makes the security worse.
If multiple PoS blocks in a row is a common sight then only PoS is required to
perform an attack, and vice-versa if multiple PoW blocks in a row is a common
sight then only PoW is required to perform an attack. In short instead of being
as strong as both; it is instead only as strong as the weakest of the two, thus
opening the coin up to more attacks** and not less.

3.5. Multi-algorithm

Another concept implemented by some coins is to use multiple hashing al-
gorithms instead of just one, miners of the different algorithms compete to
mine blocks, with the difficulty for each algorithm adjusted independently when
blocks are found in an attempt to balance things in such a way that each algo-
rithm finds blocks.

Though there are no real papers that provide a thorough analysis of the
supposed benefits of this the claimed benefits from proponents tend to be as
follows:

e Improves decentralisation.
¢ Reduces the impact of ’jump’ pools on block times.

e Improve blockchain security as more overall hashing power is available,
five algorithms are five times the hashing power.

e Various other claims, many of them rather outlandish.

While this sounds good on paper, when examined closer it seems these claims
don’t really hold up, a non-exhaustive list of problems:

43Taking a quick look at a block explorer for Peercoin shows cases where 7 or more PoS
blocks are mined before 1 PoW one is

44Various new PoS attacks like grinding become possible in combination with a normal PoW
attack.
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¢ Overall hashing doesn’t actually increase.

The reason for this is as follows, the incentive for miners to mine a coin is
financial gain, usually in an external currency e.g. selling the mined coin
immediately on the market for USD. When there is 1 algorithm to consider
the amount of hash power will reach an equilibrium based on the price x
people are willing to pay whereby mining is profitable for the miners,
otherwise they would stop mining. When you introduce more algorithms;
for example, introducing 4 more algorithms to make 5 in total, the price
people are willing to pay is not going to magically increase. The result,
therefore, is that for each algorithm the price people are willing to pay
will become x/5, miners of the original single algorithm will be earning
1/5th of what they earned before meaning that in all likelihood 1/5th of
the hash rate will remain and the rest will stop mining, likewise for four
new algorithms each will attract 1/5th of the hash rate they would if the
coin used only that algorithm, leading to a situation where the equivalent
hash rate is the same as if just one algorithm were used.*®

o Difficulties ’balancing’ the algorithms.

People often make the mistake of assuming that the quantity of hash
mining on a blockchain is the measure of what secures it; this is an under-
standable mistake as it is half true more hash is, of course, more secure
after all. However the truth is a bit more complicated, the true measure
of a blockchains security is more along the lines of 'network hash rate for
hash algorithm / total worldwide available hash rate for algorithm’ i.e. if
our network is mined at 50 000 hashes a second it makes a big difference
whether there only exists in the world the capability to mine 60 000 hashes
a second or whether there exists the capability to mine 60 000 000 hashes
a second, the latter not being very secure at all.

For a 'normal’ single algorithm coin like Bitcoin, this distinction is not
that important. It only matters that the network has as much hash as
possible, the more hash the more secure so the network always accepts
the block that adds the most work to the chain. However, once we in-
troduce multiple algorithms A1, A2, A3 the distinction becomes im-
portant. The network needs to be able to deterministically pick between
blocks mined by the three different miners and to do this it is required
to decide which is most beneficial for the chain. Is the A1 block mined
at 50 000 hashes a second, the A2 block mined at 1000 hashes a second
or the A3 block mined at 500 000 hashes a second - as the algorithms
all have different performance characteristics it is no longer enough to

simply pick the ’largest’ hash instead the optimal way to decide is to take
max(l/ Al A2 A3 )46
TotGlobal Hashrate(Al)’ TotGlobalHashrate(A2)’ TotGlobalHashrate(A3)

sadly this is impossible even for a human to determine for any given point

45Except with increased orphaning and other loses explained in the following points that
could actually lead to a loss in hash rate.
46Where TotGlobalHashrate is the total hash rate that exists for this algorithm in the
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in time, never mind deterministically in a reproducible way with the world
constantly changing.
And so a compromise is made, a static weighting is assigned in code to each

Al A2 A3
algorlthm and maX( StaticWeight(Al)’ StaticWeight(A2)’ Statchezght(A3))

used to decide, unfortunately depending on how accurate these weight-
ings are it at best leads to inefficiencies in the system®” and at worst
opens the system up to easier attack.*®

Users also tend to perceive too many blocks going to one algorithm as an
‘imbalance’ and therefore developers tend to try to weight the selection in
such a way that all the algorithms get a ’fair’ share of the blocks; unfortu-
nately, this further weakens the security of the system as now the selection
criteria for blocks has become a matter of 'perceived fairness’ as opposed
to ’which block actually secures the system more against attack’

e More attack vectors.
For each algorithm added there are now more attack vectors in the code,
five times the hashing algorithms in which to find a weakness, more com-
plex difficulty adjustment code in which to find a weakness etc.

3.6. Master nodes

Dash has introduced an ‘instant payment’ that is supposedly secure, it uses
a system of ‘master nodes’ to handle the instant payment. The 'master nodes’
act as an extra control layer on top of the network, communicating among one
another. The problem is that in order to function these 'master nodes’ must
either act in a centralised way or must solve the same problems that make
a blockchain necessary in the first place. It follows reason and is speculated
that there are likely a variety of ways in which such a system can be attacked,
however, I have yet to find a proper analysis showing the details necessary to
determine this. For the sake of brevity, I won’t go into much more detail on
this concept except to say that the lack of proof that master nodes can in fact
function as claimed is enough to rule them out as a serious solution for now
from a Florin perspective.

3.7. Checkpoint server

Many coins have resorted to a checkpoint server, or similar system, to help
prevent double spends. This is an extremely effective method, by having a
checkpoint server run at a set depth?® it is possible to prevent >50% attacks
on any transaction that has a block depth beyond the checkpoint, making these
transactions safe from double spend. There are however some downsides to the
system:

world/universe.
4TNot always picking the best block and thereby not obtaining optimal network security.
481f one of the weightings is incorrect then an attacker can gain a huge advantage by focusing
his attack mainly on that algorithm.
493 blocks for instance.
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1. If the checkpoint server is compromised, or the person/people running it
have ill intentions the checkpoint system itself can be misused to help per-
form double spends attacks; at essentially no cost to the attacker. Other
malicious uses like transaction censoring exist.

2. Some have concerns that a government or authority could therefore force
the developers to censor transactions.

3. Because of this and its centralized nature, use of a checkpoint server may
render a coin illegal and/or subject it to further regulation in some juris-
dictions.

4. The checkpoint server is a centralized point of failure and can be attacked
or brought down to disrupt the network.

5. Ultimately you effectively have a centralised system at this point, which
defeats a lot of what is meant to be the main allure of blockchain (decen-
tralisation).

While this works well as a solution for 3-conf or more®®, and can be used to
ensure that larger targets like exchanges are operated safely from >50% attack
it does not provide a solution for regular users who need faster confirmations,
or users who don’t understand the risks involved.

3.8. Difficulty adjustment algorithms

Many coins — ourselves included, have resorted to increasingly advanced dif-
ficulty algorithms to try to keep the block times more stable in the face of jump
pools. We have made great progress here with our own difficulty adjustment
algorithm, which gives us very stable block times in comparison to other coins.?!
This algorithm incorporates several heuristics to help improve prediction capa-
bilities as well as a fallback mechanism that detects if a block is taking too long
and lowers the target difficulty thereby reducing the effects of 2.9.52

Despite some success/improvements, ultimately there are limitations to what
can be achieved. A difficulty adjustment algorithm attempts to predict the
future based on information that is not only imperfect but some of which (block
time) is under the control of potentially malicious/bad-faith actors who are
financially incentivised to provide inaccurate information in an attempt to game
the algorithm, and thus will always be wrong in some instances .

While complete accuracy is obviously never possible due to the statistical
nature of the process, the larger problem is the imperfect®® timestamp informa-
tion in the blocks which is self-reported by the miners (see 2.6.2) and subject

50 Assuming you are willing to accept the decentralised aspect of it, and depending on the
depth of the checkpoint

51Even coins like Litecoin with far more hash power at their disposal struggle to keep their
block times as stable as what ours are now, with their blocks per day wildly swinging between
400 and 800. cryptoid.info [6]

52This difficulty drop is done in a careful manner that is cognisant of the maximum block
drift time allowed, so as to avoid any consensus issues.

53 At the best of times, utterly wrong at others.



20

to a fairly large allowance for adjustment either forwards or backward in time,
this leaves little room for further improvement and a huge usability problem
on regular blockchains. At the time of this writing it is not uncommon to see
bitcoin blocks take over an hour instead of the 10 minutes a user would expect,
for instance.

4. A proposed solution to many of the problems above

After much consideration of the various issues above, and much trial and
error, I have come up with what I consider the most viable/ideal solution to
the various issues above, or at least as many of the issues as possible. It is my
belief this represents a giant leap forward in the area of decentralised virtual
currencies. Most this solution is implemented in our coin Florin, with more
improvements underway and to be released in the near future.

4.1. PoW? - an improved successor to PoW
4.1.1. The naive/basic concept

Despite the various problems listed with PoS 3.3 and combined PoS/PoW
3.4, the core idea behind PoS®* is an interesting/enticing one, and it is no
surprise therefore that it has captivated so many people. Though the cur-
rent ideas/implementations involving it are flawed in various ways, this doesn’t
mean that the idea itself is not a good one; perhaps it just needs to be applied
differently. After much thought on the issues involved, I've come up with an al-
ternative way to re-use this idea in a different way, one that brings more benefits
and fewer problems.

PoW? works as follows:

e There are two distinct class of block generators on the network; PoW
miners and currency based generators who will from here be referred to
as holders.?®

¢ Mining of blocks is done by PoW miners in the usual manner that everyone
is used to from PoW systems.

o When a miner finds a block it is submitted to the network.

e Nodes validate, accept and relay the block as usual however it does not
yet get added to the tip of the chain.

o This block is at this point in what I will call a pre-signed state.®®

e When receiving a pre-signed block an eligible holder will sign the block
using his private key converting it into a signed block.?”

54Tnvolving the stake that users of the system have in the process of securing the system
55Tn order to better emphasize the role, they play in the system.

56Like a legal document that has been drawn up but not yet signed

57In a constant-time; near instant process, or as near instant as possible.
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e The first step of holding involves adding additional data to the block, this
includes a holder timestamp®®, any additional transactions® (subject to
the existing block size limit) and a transaction to pay out the holder fee.%°

o The holder then attempts to sign the block.5?
« Assoon as a valid signed block is created it is rebroadcast to the network.5?

e Once peers receive a signed block they add it to the tip of the chain as
usual and everything proceeds as normal from here, PoW miners attempt
to mine a new block on top of the new tip of the chain, and the cycle
repeats.

The above is a relatively simple change to how things work currently, however
it has a larger and more important impact than one might think at first read
through. Below the key impacts on the system:

o Holders can add transactions to empty or non-full blocks and get fees for it.
Unlike PoW miners, holders must actively hold a portion of the currency
and as a result they have a vested interest in a healthy network; this acts as
an additional incentive to keep holders honest. Holders are therefore highly
incentivised to add transactions to blocks they sign whenever possible.
This means that the network will almost always be able to operate at
full efficiency in terms of transaction capacity/throughput and will not be
hampered by empty blocks 2.7 in cases where transactions are waiting to
be added to blocks.%?

e When holding a block a PoW miner can no longer immediately mine a
second block that follows this one, as it is necessary to have it signed
first. As a result selfish mining 2.3 is no longer feasibly possible without
controlling a substantial percentage of both the hash rate as well as coins
in circulation.%*

58 Allowing for a massive improvement in 2.6.2

59 Acting as a countermeasure to 2.7.2

60Which includes also the transaction fee for any transactions added by the holder.

61T a manner that can best be compared as similar to existing PoS systems, except using
a holder selection system that has some unique properties including: constant time, minimal
latency/delay, deterministic

62Note that it isn’t really necessary to rebroadcast the PoW part of the block to peers that
already have it, only the additional holder/signed portion needs to be broadcast. So there is
no additional overhead here, the block doesn’t have to be sent between all peers twice.

631t is true that empty blocks are still possible, but it would require both the miner and the
holder to participate in not adding transactions. For both of them to by chance manage to
mine the same block, without a conspiracy among a huge majority of miners and holders, the
probability of this is incredibly small.

64In order to have a block signed the miner will first need to broadcast to the network at
which point everyone will know about it. While it is true that a miner could theoretically be
the holder for his own blocks I will detail later why this is not realistically possible.
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o This also provides a good resistance toward private side chains 2.4.%°

e A >50% attack 2.2 by PoW miners becomes incredibly difficult. To
achieve a >50% probability of controlling a specific block on a regular
PoW coin one 'merely’ requires >50% of the hash rate.’® Using the for-
mula P (zNy) = P(x) x P(y)°" we can see that with PoW?2 to achieve
a >b0% chance of controlling a specific block approximately 71% of the
hash rate as well as 71% of the coin supply P (0.71 N 0.71) = 0.504; 90% of
hash rate and 56% of coin supply P (0.90 N 0.56) = 0.504 ; or 95% of coin
supply and 53% of hash rate P (0.95N0.53) = 0.5035 is required. This
is a substantial increase in overall network security, even when factoring
in a likely drop in PoW hash rate due to the reward for holders. See
Appendix B on page 34 for further analysis of this.

e At this point the question of self-interest becomes relevant i.e. whether
somebody with between 53% and 71% of the coin supply is going to attack
a network in which they themselves hold such a large stake. So attackers
are likely disincentivised from attacking the coin to some extent as well.

o The practical implication here is that®® even a transaction with only 1

confirmation on a PoW?2 coin can be treated as relatively secure®®, and 2 or
3 confirmations incredibly secure vs a standard PoW coin where at least 6
or 7 confirmations are generally considered desirable. The level of security
here is displayed further in Appendix B on page 34 which is produced using
modified source code that is taken from the Satoshi whitepaper (Nakamoto
[11]) the source code is also displayed in Appendix E on page 37.

Of course, nothing is perfect, and any system especially in its naive implemen-
tation comes with at least some down sides, in the case of PoW?2:

e More complex code base.
The extra code to implement PoW? does introduce some extra complexity
into the system, and extra complexity always means more room for error.
However the added complexity is not great, the functioning of the system
is still simple and elegant enough that it can be properly reasoned about
and evaluated, so I do not feel like this is a cause for concern. Unlike for
instance with some of the PoS solutions out there.

o Extra chance of blockchain stalling.
Having two types of block generators involved in the system means that

65For the same reason as above, and with the same caveat.

66 Actually as little as 33%

67The intersection of disjoint probabilities x and y is equal to the probability of x multiplied
by the probability of y.

68 Assuming a well-distributed coin, enough coin holders willing to participate in the holding
process and a few other things that can be guarded against in a proper client implementation
- enough connected peers that are not spoofed for instance.

69Thereby helping to reduce instances of 2.1.1.
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there are now two possible points of failure; the blockchain can now stall
either due to a lack of holders or a lack of PoW miners, however as long as
we are conscious of this possibility it is not difficult to design the system
in such a way as to mitigate this risk.

o Security risks for wallets that are holding
As with PoS implementations, (3.3.1) holders need a private key in order
to sign and this can be a security issue if not adequately addressed. This
however is something that can and is addressed through proper system
design which we deal with elsewhere in the paper.

« Difficulties with SPV wallets

PoS implementations have difficulty with SPV mode for mobile wallets
(3.3.8). PoW? partially inherits this problem; however unlike with PoS this
does not prevent SPV implementation. SPV nodes are capable of verifying
the PoW part of the block but not the holder-signed portion of it, due to
the holding algorithm requiring the full blockchain in order to calculate
who the valid holders are. This is adequate for them to function in a
secure way with the security slightly downgraded from a fully validating
PoW?2 node.”™ It is worth noting that this ’degraded’ security is essentially
at worst on par with what it would have been for a PoW SPV node and
if implemented right quite possibly still more secure than the PoW SPV
node, so though SPV does not directly gain as much from PoW? as a
full verifying node it is not harmed by it either and on the contrary still
benefits.

Therefore it is necessary to refine the process further to try and address or
minimise some of these downsides.

4.1.2. The optimised/full concept
There are several opportunities to further improve on the initial naive con-
cept.

1. Opt-in participation - In usual PoS implementations everyone on the net-
work is able to stake, this has some unfortunate implications. Namely
it is impossible to tell how many coins are actively protecting the net-
work vs e.g. coins that are in cold storage, have been lost, are sitting
on exchanges, whose owners never open their wallets, or are otherwise
not available. Without the ability to measure the total number of staking
coins it becomes harder to gauge the expense of a possible attack and thus
impossible to really know how secure the network is at any given moment.
Worse people who have no intention of staking might be selected to stake”!
leading to erratic block times as a result. An improvement can therefore
be had by changing to an opt-in system for holding, whereby only coins

70Which is anyway the case with an SPV node.
"1n the case of a ’follow the Satoshi’ style implementation.
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in 'special’ addresses can be selected as holders, the total number of coins
securing the network can then be easily enumerated, suspicious activity
monitored for and holders selected only from the eligible pool.

2. Time-based participation - Two arguments often leveled against PoS is
that it gives too much power to large coin holders and that unlike PoW
(which burns electricity) nothing of value is “at stake” in a PoS system.
There is no expense to a staker when he signs a block so what is to stop
him from signing competing blocks? One way of dealing this, which ties in
with Opt-in participation above is to introduce a time concept to staking
accounts. When placing coins in a staking account a user can pick a time
period for which the funds will be locked (similar to how in regular banking
systems you have fixed period savings accounts), the user will be unable
to spend coins from the account until the lock time has expired but will
be able to stake, by doing this the user now has something real “at stake”
namely the liquidity of his money.

The time period is factored into the equation determining the stake weight
for the account, so users who choose to lock their funds for longer periods
of time will stake more frequently, this gives an opportunity for users with
fewer coins to out-stake those with more coins, helping to level the playing
field to some extent.

This is also beneficial for the network, users who are willing to lock their
coins for long periods of time are more likely to have the long term health
of the network in mind and therefore are less likely to attack the network,
by allowing such users to stake more frequently the security of the network
is therefore improved. For an attacker to succeed in attacking the network
he would likely have to lock his coins for a long period of time which is not
desirable for an attacker and acts as yet another obstacle for an attacker
to contend with.

Finally with users tying a portion of their wealth up for a fixed term,
the decrease in the number of coins that are 100% liquid should bring
positive impacts for the currency as a whole. As users are unable to
rapidly exchange all of their coins in moments of panic or hysteria, this
should lead to a slightly more stable market with a currency that is much
less prone to giant spikes and dumps in price and attract users with a more
long term mindset. If the reward is well balanced and not excessive these
benefits can be had without achieving the undesirable effect of drastically
decreasing overall market liquidity and an absence of users who actually
use the coin on a day to day basis.

3. Double-key based participation - By changing the staking address system
to use two instead of one private/public key pair it is possible to solve
the security issue of staking wallets. Each staking address will have two
keys associated with it, the first we will call the spending-key and the
second the staking-key. To spend funds from the account a signature from
both keys is required. To stake only a signature from the staking-key
would be required. The wallet can therefore keep the spending-key safely
encrypted and leave the staking-key unencrypted allowing the wallet to
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stake without any concern that it might be stolen; if the staking-key is
stolen an attacker cannot steal any funds, all he can do is stake on behalf
of the victim. This improvement should allow more users to participate
in staking, and is therefore beneficial to network security.

. Holding selection algorithm - By carefully adjusting the holder selection

algorithm in ways that might put a potential attacker at a disadvantage it
is possible to improve further on the security model and make an attack
even harder.

. There exist some other interesting possibilities that PoW? can offer, e.g.

the possibility that holders could be allowed to temporarily increase block
sizes in certain situations to help address high transaction traffic periods
in a safe way and thereby address scaling, however, these sorts of ideas
are best discussed later so we will not go into further detail on them now.

. Signature-based synchronisation - By embedding in each block header a

small compressed delta/changeset of the set of eligible it becomes possible
for SPV nodes to verify blocks by signature as well. Further even full nodes
can, with this additional information verify most (all but the most recent)
blocks by signature only. This in turn decouples sync speed from PoW
verification speed, this allows the possibility of having a PoW algorithm
that is slower to verify while still being able to sync the chain with accep-
tible performance, removing an obstacle that usually makes GPU/ASIC
resistance impossible.

4.1.8. Implementation details for Florin

Florin will be making use of an optimised version of PoW? with the following

details.

e Holding will be opt-in, users will create and transfer funds into a holding

account’ in order to participate in the process.

These accounts will use special address scripts on the blockchain that
serve as an indicator to the network that they are intended to participate
in holding, special network rules will apply to these addresses to facilitate
the process of holding. More details in Appendix A on page 31.

Holding addresses will be derived from two key pairs instead of one, the
network will allow only normal spend operations with the first key and
only special holding related operations with the second. Thereby allowing
wallets to always sign blocks when their wallet is open without exposing
their funds to any risk of theft or having to enter a password at any point.”
This also allows for set up of special backup holding devices/software to
ensure holding continues if their wallet is offline.

This allows for third party services that sign on behalf of the user /holder,
using their holding key without ever having access to their actual funds.

72Spending-key remains encrypted in memory, as all other wallet keys normally would
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However the reward portion of the operation can be paid out to any ad-
dress, allowing such services to take some or all of the reward as a fee,
this along with the ease of holding on their own hardware/servers should
ensure that no holding service ever obtains an overly large portion of ad-
dresses.

« Holding addresses will”™® upon creation have a fixed 'maturity’ time period

which is set using a future block number at which the address will mature,
the maturity period is determined by the user and must be between the
maximum and minimum™ period that the network allows, the network
will not accept any spends from the address until such time as the time
period has expired however will allow the address to be used for holding
during that time.

e The algorithm via which the holder/signer is selected will include both
quantity of coins as well as the fixed time period as a selection factor.
Thereby putting attackers at a disadvantage as they would have to lock
up their money for long periods of time in order to compete with legitimate
holders.

e A minimum cool down period of 100 blocks™ will apply after signing a
block before an address becomes eligible to sign again, this ensures that
even with a large weighting a user cannot dominate the network in any
significant way with a single address. More details in Appendix A on
page 31.

e The weighting will be slightly biased towards accounts with more coins
and longer time periods such that an address with 50000 coins would
have a higher chance of winning any given block than two addresses with
25000 each would (given the same time period). This further penalizes
an attacker who in order to succeed with a >50% attack would require
multiple addresses thereby reducing the impact of his coins and increasing
the expenditure needed in order to succeed.”

« The algorithm will not implement any sort of coin weight concept™” as this
is unnecessary to its functioning and would only introduce flaws. Instead,
the maturity period will allow those with fewer coins a ’fair’ chance to
compete by opting to take a longer maturity period to make up for their
lack of coins.

e The algorithm via which holders are selected will be a random but deter-
ministic lottery style system, and not a competitive system (like regular

73Via custom script commands.

74Roughly 2 months to 3 years, see Appendix for more details.

75Chosen to match the same 100 block maturity period that is imposed on PoW miners.

76To attack a depth of 5 blocks for instance an attacker would require at least 5 addresses,
thereby splitting his funds in 5

7TThereby avoiding flaws like 3.3.7
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PoW or PoS) as the latter is prone to grinding attacks. More details in
Appendix A on page 31.

Holder addresses that have not signed any blocks for a certain period of
time®, will be temporarily removed from the pool of eligible addresses
and will be required to perform a ’refresh’ transaction (at a fee) in order
to become eligible again. This will prevent a build up of non-participating
systems that could cause the system to stall.

The block reward for PoW miners will be 0.025 florin (with halvings every
400000 blocks)

The block reward for holders will be 0.075 florin (with halvings every
400000 blocks)

Only transactions included in a PoW portion of a block will be considered
as having 1 confirmation, transactions in a holder/signed portion will be
considered by wallets as having 0 confirmations until such time as a sub-
sequent PoW block is mined.”™ For some purposes it may be worthwhile
to consider transactions in the holder/signed portion as having % a confir-
mation, however, we will not implement this concept yet it is something
for consideration at a later date.

SPV wallets will also only recognise transactions as having 1 confirmation
once they have been verified by a PoW portion of a block, note that this
is anyway the case with normal wallets but for SPV this is for different
reasons as an SPV wallet cannot confirm the holder/signed portion as
they don’t keep a full blockchain. Due to the fact that potential holders
are only drawn from the last 10000 blocks and there is a fixed upper
bound on memory/complexity in the process, it will be possible for SPV
peers to verify the holder/signed portion as well in future; though more
development is still required in that area and will not be pursued for
the initial launch. An additional concept of ’trusted peers’ will also be
introduced into our SPV wallets in future which will aid with both this as
well as general protection against Sybil attacks (2.8).

The difficulty adjustment algorithm will make use of the timestamp from
the holder/signed portion instead of the PoW portion to enable better
accuracy and remove from PoW miners the ability to tamper with the
PoW difficulty.®°

A more detailed explanation/analysis of the holder selection algorithm can be
found in Appendix A on page 31.

"8Proportionate to their weighting.

"More information why in 4.1.5.

80The timestamp from both will be used for block acceptance but the holder timestamp
only for difficulty adjustment.
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4.1.4. An analysis of PoW? against the known flaws/attacks faced by existing
algorithms
o >50% attacks (2.2) - Network resistance against >50% attacks greatly
increased, to the point that 1-conf transactions are secure enough for most
purposes.

« Selfish mining (2.3) - Possibility of selfish mining substantially reduced,
essentially not possible.

o DoS via mining of empty blocks (2.7.2) - Difficulty of achieving this greatly
increased, essentially not possible.

o Erratic/Inaccurate block times (2.6) - Accuracy of block times greatly
increased as time is now controlled by the PoS miners and not the PoW
miners, which in turn allows for better functioning of difficulty adjustment
algorithm.

e PoS insecure private keys (3.3.1) - Private keys secured at all times.

o Nothing at stake issue (3.3.2) - Substantial PoW hash power involved, so
PoW hash is at stake.

o PoS Stake buildup (3.3.7) - No coin age is involved in the process so the
system is immune to this.

o PoS stake grinding (3.3.4) - Grinding can only be achieved via mining new
PoW blocks, as a substantial PoW hash rate is involved grinding becomes
infeasible.

o PoS old private keys (3.3.6) - Old private keys effectively hold no attack
value, as the amount of PoW hash power required to perform an attack
with old keys would be substantial.

4.1.5. Consideration of new flaws/attacks
There exist two new possible 'weak points’ in the system:

1. As the holding algorithm selects only one winner there exists the likelihood
that at times the winner will not be available to perform his signing duty.
The obvious way to address this is to introduce multiple winners into the
system as redundancy, this would be more similar to what other previous
systems have tried, and unfortunately vastly weakens the system opening
it up to grinding attacks and other vulnerabilities.

Instead, we rely on the PoW miners. When PoW miners find a block they
do not stop mining but continue attempting to create competing blocks
until they receive news of a signed block, as each new block mined will
randomly select a new single holder this provides the variation required to
overcome stalling without introducing the vulnerabilities that come with
multiple holders. Ordinarily, there would be concerns about how long this
process might take. If for example 3 holders in a row were not present and
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each block takes 5 minutes then we have a 15-minute wait, if 10 holders
in a row are missing 50 minutes etc. It would seem that there is potential
here both for accidental stalls as well as perhaps a deliberate DoS attack.
However, our difficulty adjustment algorithm; Delta, is not ordinary and
already has a special mechanism built into it to safely lower the difficulty
in cases where block times are overly long. This assures us that as the wait
becomes longer the quantity of PoW blocks mined will become more and
more frequent, thereby minimising the delay in such situations.3! This
reduces the stalling to at worst a minor inconvenience instead of a major
attack vector.

The opt-in nature of the system, the various mechanisms that make having
a large percentage chance of being selected difficult/expensive, as well as
the fact that non-participating holders are regularly pruned’ from the
system and need to pay a fee to re-enter the system. All work together
to ensure a pool of the ’fittest’ holders and would make any long-term
sustained attempt at achieving a DoS attack in this way impractical and
costly.

2. As the selected holder does not need to perform any expensive work to
perform the signing, the possibility exists for a holder to attempt a DoS
attack on the network by signing multiple blocks all with varying trans-
actions/data and sending them out to different peers. It is worth noting
that this is not specifically unique to PoW? but could also be conducted
on a normal PoS coin simply by using more powerful hardware like an
ASIC miner. It is the case here that an existing flaw has just been made
a bit more obvious. Thankfully, it is not overly difficult to deal with this
situation simply by putting some network rules in place.

o Clients should not request signed blocks when the headers contain the
same base PoW block as those of a header/block they have already
received.

o Clients should not forward multiple headers containing the same base
PoW block.

o Clients should assign a misbehaviour score for each subsequent header
containing the same base PoW block.

¢ Clients should eventually ban peers after multiple such blocks.

In the case where different nodes end up with a different signed block, the
network will quickly come to consensus again when the next PoW block
is mined.3?

81This subtle detail turns out to be one of the important puzzle pieces that make this concept
possible, and the lack of this feature previously is quite possibly what prevented PoW? from
appearing sooner.

82(Qccasional brief forking is part of how blockchains work so should not be cause for alarm.
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5. Conclusion

This paper has looked at various of the challenges faced by virtual currencies,
the strength and weaknesses of the blockchain in its current form as well as the
various solutions that have been offered by some as possible ways to counter
these weaknesses. I have looked at both the positive aspects of these solutions,
where such aspects exist, as well as their shortcomings.

Based on this we have developed Florin using an exciting new concept PoW?,
which I consider the next generation step, building on top of these solutions
something that while simple in description manages to not only significantly
improve on many of the weaker aspects of a traditional PoW blockchain but also
drastically enhance the network security; doing so in a way that feels natural
and does not introduce massive complexity or new failure modes.

In addition to the immediate improvements that this brings, the addition of
a holder in the process makes easier various other future developments on top
of the chain, including various new ways to handle off chain settlement layers
as well as side chains and other concepts.
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Appendix A. Holder selection algorithm

The most critical part of PoW? is the algorithm that determines the selection
of the holder for a mined block. The process has the following requirements:

1. It needs to be random.

2. It needs to be deterministic, i.e. should not rely on additional network
communication.

3. It should be resistant to grinding attacks, not possible to gain a mechanical
advantage.

4. Tt should not be possible to gain any advantage by having multiple ac-

counts.

It should not be possible to predict the winner in advance.

It should be as light on resources as possible.

It should lead to as few forks in the blockchain as possible.

It needs to be fast and efficient and should not exhaust huge amounts of

memory, it should introduce as little delay into the system as possible.

®© N oo

I have discarded the possibility of a hashcash (Back [1]) based system as this
fails to meet criteria 3, 5 and 7. Aside from hashcash the remaining possibility is
some kind of random selection using the blockchain as a seed, existing computer
science literature has an algorithm that is perfect for the task, used mostly in
genetic algorithms and known as 'Roulette wheel selection’ (Béck [2]) it is a
perfect fit for the task. See image on page 33 for a brief understanding of how
such a selection works.®3
The algorithm will thus work as follows:

e A valid holder input is any unspent output constructed using a special
holding script, that is included in any of the last 10000 blocks of the
chain.8

o Holder inputs are subject to the following restrictions.

1. Must be locked for a minimum of 17280 blocks from creation. (Ap-
proximately 2 calendar months)

2. Must be locked for a maximum of 315360 blocks from creation. (Ap-
proximately 3 years)

3. Must have a minimum of 30 coins and a minimum weight of 10000.%°

o Holding inputs that have been newly created, or are the result of a previous
holding operation within the last 100 blocks are excluded.

83Note that all in program arithmetic is done using appropriate sized integer types and
appropriate basing so as to keep precision while avoiding floating point or other inprecision
that can be a source of indeterminism between different architectures.In this paper we do not
deal with this aspect of things to keep the math simpler to follow and understand

84Constant time requirement to scan backward in the chain does not prohibit pruning of
the UTXO.

85Subject to adjustment in future.
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e Holding inputs are inserted into the array in a deterministic fashion, first
by age and second®® by the quantity and finally®” by block order.

e Holding inputs are assigned a weighting based on their quantity and the
amount of time (in blocks) that they are unspendable.®® The weighting is
designed in such a way that it is in most cases®” more financially beneficial
for a user to gather more of their coins into a single account than it would
be for multiple accounts?’, and needs to accomodate the fact that larger
accounts are more heavily penalised by the 100 block wait than smaller
ones are in order to do this, there are many possible weighting formulas
that could be used for this each with various pros and cons under various
situations (large coin participation, small coin participation and so forth.
The formula settled on for Florin is: Weight = (((Quantity)+(Quantity?/Modi fier))x
(14 5&me )" With Quantity being equal to the number of coins mul-
tiplied by 100 and the modifier set at 10000. 288 is the number of ex-
pected/targetted blocks per day and 365 the number of days in a general
year.

e A second pass through of all values is done, any inputs that are older than

Weight 3 : 92
maX((ForarNeworkiveighi X 2),200) are removed from consideration.

e A third and final pass through all values is done, any holder whose weight
exceeds 1% of the overall weighting as taken from the second pass, is
reduced to 1% of this weighting.”?

e The sha256 hash of the PoW block is converted to a 256-bit seed integer.
The use of the normal scrypt PoW hash for this is deliberately avoided to
prevent any theoretical manipulation that could be attempted by means
of varying the difficulty within certain ranges.’*

o A roulette wheel selection is then done to select the winning holder from
the array, with the spin always starting from 0 to allow for more efficient
calculation.”’

86Tn the case of identical age

87in the case of identical quantity

88 This is set by the user on address creation.

891deally up until at least 0.5% of network weight keeping in mind the 1% maximum weight
rule.

90This is important to diminish the effect an attacker can have on the network

911n actual code implementations, calculation must be rebased to avoid floating point and
therefore the implementation is a bit more complex than this, however left as is here for clarity.

92This is to prevent stale inactive holders from stalling the chain repeatedly.

93 As this change affects the final overall weighting the actual result will be slightly different
than 1%, but this is fine no attempt is made to adjust for this.

94Even though this is unlikely and the only legitimate case I can think of is when the
difficulty gets very high.

95 Algorithmically we just take the modulus, Seed%TotalW eighting and then binary search
the array for the appropriate place.



33

This meets all of our requirements, it is completely random and deterministic®®,
there is no opportunity for grinding®”’, there is a maximum cap on algorithm
complexity and resource usage, splitting coins into multiple accounts always give
less overall weighting thereby weakening attackers, it is impossible to predict
a winner in advance of the block arriving, there is almost no time delay in
accepting a holder. As only one holder is selected no forking takes place in this
part of the algorithm.

selection
point

Fittest individual

has largest share of Weakest individual

the roulette wheel $ = has smallest share of
the roulette wheel

9630 long as we take care to avoid floating point
97Except in the PoW generation, but we address that elsewhere in the paper.
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Appendix B. Attack probability [Naive]*s

PoW? combines regular PoW along with the holding power of coin holders,
in a way that should lead to a minimal drop in PoW hash rate while at the
same time substantially enhancing the blockchain security and also bringing
some other desirable properties to the table. As it is difficult to grasp how
significant the change is, it is best to have a proper visualisation. To illustrate
this I’ve taken code from Nakamoto [11] (see Appendix B), modified it slightly
for our purposes® and run it to generate a visualisation on page 36.

For this process, I am using the following figures, taken at the time of writing,
they are not 100% accurate but for our purposes are more than sufficient:

o Florin network hash rate (SIGMA) 1 gh/s.

o The cost to rent cpu power is approximatels $0.80 for 10Mh/s!%0

rigs, so 1gh/h = $80'%!

mining

e The cost to purchase cpu power varies wildly, but if we assume second
hand hardware $120 for 10Mh/s is possible, or $12000 for 1 gh/s

 Florin price 1 XFL = $70
o Florin availability on the largest exchange, 1000 XFL.
e Florin in circulation 134 000.
The following assumptions are made:
« 50 000 coins participate in holding. 02

o We calculate based on the attacker using rental hash as this is cheaper
than purchasing hash and is possible at the sort of hashrates the network
(or a similar equivalent network) would likely have. For larger hashrates
an attacker would need to purchase hardware instead which would cost
substantially more.

o We will ignore the market effect that buying larger amounts of coins, in
order, to attack PoW?2 would have on the coin price.'®® This would drive
up the cost of acquiring further coins for the attack, as well as affect the
network hash rate.!* Therefore the cost estimates for the various PoW?
attacks, especially the ones involving larger amounts of coins are likely
vast underestimates and would cost drastically more in reality.

98Bijased toward PoW.
99Original core equation unchanged.
100Rough estimate, prices and hash of available machines may vary over time and provider
10T A1l prices for this Appendix are in USD.
102Based on current participation at time of writing, will vary over time
103 argest exchange has only 5 000 000 coins available for sale at the moment, so any purchase
of more than 3 000 000 coins is likely to have a measurable impact on the market price
104The more coins are worth the more network hash rate is attracted.
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Attack probability conclusion:

The chart ( on the following page) clearly illustrates that even with the
comparison done to favour PoW in every possible way, PoW? vastly outperforms
PoW in terms of security for any given attack price, and that further even in
a scenario where vastly more money is thrown at an attack PoW? continues to
offer protection where PoW would not. Even at $1°030°5341%5 PoW? remains
secure while with only $137700 it is possible to gain complete control over the
equivalent PoW network. Even at 60% hash rate and 60% coins there is only a
20% risk at 9 confirms and with a few more confirms a low enough risk to be
good enough for most transactions.

For the same attack price point!?® as a >50% attack on the PoW network,
the PoW? network yields less than a 1% chance of success to the attacker, leading
to what I am terming ’secure 1-conf’ transactions'®” for most purposes and
2 or 3 confirmations being reasonably secure for all but the most sensitive of
transactions.

Appendix C. Analysis of attack probability with grinding

The astute will notice that we have of course ignored a possibility above.
Instead of opting for e.g. 60% of the PoW hash and 60% of the holding coins an
attacker could instead attempt a grinding attack. He could aim to have many
multiples of the network hash rate and a smaller portion of the coins. As an
example lets say he were to hire 200x the network hashrate, 130 gh/s for $10°400
and 0.3% of the coins $10°500, a total of $20’900.

The probability is as follows:

e P (signingblock) = 1—P(notsigningblock)™wmattempts — 1 P((.997)200 =
1—-0.548 = 0.452

A roughly 45.2% chance of signing a single block, instead of the 0.3% his coins
would normally entitle him to, however at a substantial expense compared to
a plain >50% attack. While grinding is possible to an extent with PoW?, it is
resilient to it to the point that it is not likely to be effectual when reasonable
network hash rates are involved.

105 And this is actually an underestimate on the price as this many coins would really cost
far more to acquire.

106\Which in reality would likely cost even more.

107\Where secure is relative as it has always been, it is common for instance for Bitcoin users
to refer to 5, 6 or 7 conf as ’secure’ but the security is relative as can be seen in the probability
analysis graph below.
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Appendix E. Attack probability source code

The below code (borrowed and adapted from Nakamoto [11]) calculates!?®
in function AttackerSuccessProbability the chances of success an attacker has
when attacking a chain of depth q for probability z; for PoW we feed in the
percentage hash rate as the probability, for PoW? we use P (PoW N Witness) =
P(PoW) x P(Witness). Ignores that a Holder cannot sign multiple blocks in
a row, further reducing the probability for each subsequent block as well as
various other enhancements discussed in the paper, therefore results are biased
in favour of PoW.

#include <iostream>
#include <iomanip>
#include <math.h>

double pricePerGh = 90.0;

double networkHashRate = 1.0;
double pricePerCoin = 70;

double networkNumCoins = 50000.0;

double AttackerSuccessProbability (double q, int z)
{
double p = 1.0 — q;
double lambda = z * (q / p);
double sum = 1.0;
int i, k;
for (k = 0; k <= z; k++)
{
double poisson = exp(—lambda);
for (i =1; i <=k; i++4)
poisson *= lambda / i;
sum —= poisson * (1 — pow(q / p, z — k));
}

return sum *x 100;

}

int AttackerCost(double percentHashrate, double percentCoins)

{
int hashCost = pricePerGh * ((networkHashRates*(percentCoins >0.070.9:1))=*percentHas
int coinCost = pricePerCoin x (networkNumCoinsxpercentCoins);
return hashCost + coinCost;

}

void printPOWAttack(double percentage)

109Tn a slightly naive but still useful way.
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std ::cout << 7"[PoW] 7 << (int)(percentage * 100) << "% hash\n”
std :: cout << AttackerCost(percentage, 0.0) << "\n”;
for (int i=0;i <10;i++)

{
std :: cout
<< 7(7 << std::fixed
<< std::setprecision (12)
<< i< K
<< AttackerSuccessProbability (percentage, i) << ”)\n”;
}
¥

void printPOW2Attack(double percentagePOW , double percentagePOS)
{

std :: cout

<< 7[PoW?] 7
<< (int)(percentagePOW % 100)
<< "% hash 7

<< (int)(percentagePOS = 100)
<< "% coins\n”

std :: cout << AttackerCost (percentagePOW , percentagePOS) << ”"\n”

for (int i=0;i <10;i++)
{
std :: cout
<< (7 << std::fixed
<< std::setprecision (12)
<< i< K
<< AttackerSuccessProbability (percentagePOW x percentagePOS, i) << 7)\n”;

}

¥

int main ()

{
printPOWAttack (0.05);
printPOWAttack (0.1); printPOW2Attack(0.01, 0.01);
printPOWAttack (0.15); printPOW2Attack(0.02, 0.02);
printPOWAttack (0.3); printPOW2Attack(0.04, 0.04);
printPOWAttack (0.51); printPOW2Attack (0.07, 0.07);
printPOW2Attack (0.15, 0.15); printPOW2Attack (0.6, 0.1);
printPOW2Attack (0.3, 0.3); printPOW2Attack(0.51, 0.51);
printPOW2Attack (0.6, 0.6);

return —1; }



NOMENCLATURE 39

Nomenclature

Hashcash Hashcash is a proof-of-work system used to limit email spam and

denial-of-service attacks, and more recently has become known for
its use in bitcoin (and other cryptocurrencies) as part of the mining
algorithm.

Holding In the context of PoW?2 a holder is a person who owns coins and places

PoS

his coins into a special time locked account and then uses these locked
coins to sign PoW blocks as valid.

Proof of Stake.

PoW Proof of Work.

PoW? Proof of Work 2 (or Proof of Work squared). The name for our new

system that achieves massive security gains by multiplying together
the security of Proof of Work and of the holding signatures.

Scrypt In cryptography, scrypt (pronounced ”ess crypt”) is a password-based

key derivation function created by Colin Percival, originally for the
Tarsnap online backup service.

SPV Simplified Payment Verification, a lighter /faster method used by most
mobile wallets. Nakamoto (2009)
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