
 THE DUBLR WHITEPAPER:

 The Dublr ERC20 token, and the Dublr decentralized exchange

 Hiroshi Yamamoto
 hiroshi.yamamoto.dublr@protonmail.com

 2022-10-14

 Abstract: Dublr is an ultra-secure fungible token smart contract that implements the ERC20 token
 standard, as well as several extensions to improve usability and to mitigate a number of known
 ERC20 security vulnerabilities. As a consequence of close attention to security, Dublr may be the
 most secure and functional of all currently-available ERC20 tokens. Additionally, Dublr
 implements its own built-in decentralized exchange (DEX) for decentralized finance (DeFi), so
 that Dublr tokens can be bought and sold using the Dublr smart contract itself: Dublr has the
 unique property that it is both a token and its own DEX. Uniquely, the total supply of Dublr tokens
 is generated on-demand, rather than by ICO. New tokens are minted whenever buyer demand
 exceeds seller supply on the DEX below the current mint price (the mint price sets an upper bound
 on how fast the price of the token can grow). The mint price increases exponentially on a
 compound interest curve, with a doubling time of 90 days, hence the name “Dublr”. The
 economics of this minting behavior should give rise to interesting market dynamics for this token.

 Background
 Security and usability problems with ERC20

 Since the ERC20 fungible token standard was ratified,
 thousands of ERC20 tokens have been created on
 EVM-compatible blockchains. Reference
 implementations of the ERC20 standard, such as the
 OpenZeppelin implementation , have made it trivially
 easy to create and launch a new fungible token.
 However, the ERC20 standard has a number of innate
 security problems: a double-spend race condition
 allows the allowance mechanism to be abused in
 frontrunning attacks against the ERC20 standard itself,
 and a tendency for some decentralized applications
 (dapps) to ask the user to grant unlimited allowances
 has led to hundreds of millions of dollars’ worth of
 tokens being siphoned out of users’ accounts, across
 many different ERC20 tokens, usually due to
 vulnerabilities in dapps rather than the token
 implementation. Additionally, hundreds of millions of
 dollars have been lost by users attempting to transfer
 tokens to the address of a contract that is not designed
 to receive incoming token transfers.

 As a result of these issues, there is a need for a
 better ERC20 implementation that protects users from
 bad actors, and from their own mistakes. The Dublr
 smart contract implements a greatly improved ERC20
 implementation that can mitigate these issues through
 API extensions, and/or by optionally breaking
 compatibility with ERC20 to prevent these issues. The
 Dublr ERC20 implementation is contained in a new
 token library known as OmniToken (not to be confused
 with the OMNI ERC20 token).

mailto:hiroshi.yamamoto.dublr@protonmail.com
https://eips.ethereum.org/EIPS/eip-20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

 SEC regulatory problems with ERC20 tokens

 Additional issues arise around the standard model of
 how ERC20 token supply is generated and distributed,
 which is the ICO (Initial Coin Offering). An ICO is a
 process or event in which a company (especially a
 start-up) attempts to raise capital by selling a new
 cryptocurrency, which investors may purchase in the
 hope that the value of the cryptocurrency will increase,
 or to later exchange for services offered by that
 company. In this process, the founders usually set aside
 some large number of tokens for themselves, effectively
 generating profit out of thin air. The US Securities and
 Exchange Commission has argued that the ICO model
 of token distribution satisfies the Howey test to
 determine whether an asset is a security, since an ICO
 can lead investors to believe they will generate profits
 through the efforts of others. If a cryptocurrency is
 declared to be a security, then the distributors of that
 cryptocurrency are bound by US law to properly
 implement KYC (Know Your Customer), collecting and
 verifying passport information from all users, in order
 to comply with AML (Anti-Money Laundering) laws.
 KYC is effectively impossible for basically every
 cryptocurrency deployed today, which effectively
 renders illegal any cryptocurrency that has been
 declared by the SEC to be a security. Many countries
 defer to the US SEC over these matters, therefore this is
 an issue with international impact.

 To mitigate this problem, Dublr implements its
 own decentralized exchange (DEX), which generates
 all token supply on demand, when demand exceeds
 supply below a current “mint price”. No tokens were
 generated on smart contract deployment, and no tokens
 are distributed via ICO.

 Additionally, the SEC has argued that the
 possession by owners of assets of the same class being
 distributed to investors could be construed as
 sufficiently motivating of owners’ future efforts that
 they are likely to trigger the Howey test, causing the
 asset to be declared to be a security.

 The creator of Dublr has minted zero tokens for
 their own use. This is in sharp contrast to the launch of
 most cryptocurrency tokens, where the creator(s) of the
 token usually mint a large number of tokens for
 themselves during token deployment, with the purpose
 of self-enrichment. Pre-minting undermines their users’
 trust in the token, because users know that they are
 buying into an ecosystem dominated by a few “whales”

 (holders of an enormous number of tokens) who spent
 nothing to obtain their holdings. To avoid this, and the
 securities implications of token ownership by creators,
 the total supply of Dublr tokens will be community-
 owned. In fact, it is difficult to verify, but Dublr may be
 the only ERC20 token contract that has ever been
 deployed without minting tokens for the contract
 creator(s).

 SEC regulatory problems with Ethereum

 SEC Chairman Gary Gensler recently declared that the
 entire Ethereum ecosystem may constitute a security,
 because the switch from proof of work to proof of stake
 triggers the Howey test , since tokens are staked with the
 expectation of profit. Additionally, he stated that the
 entire Ethereum ecosystem should be considered to fall
 under US jurisdiction, because the majority (40.1%) of
 Ethereum validator nodes are currently hosted on
 US-based IP addresses . This could mean that any token
 launched on Ethereum could be construed to be a
 security, effectively making the token illegal. The SEC
 has already retroactively sued one creator of a
 cryptocurrency that launched in 2018, four years before
 “the merge” (the switch to proof of stake). This lawsuit
 was launched immediately after the merge.

 Consequently, due to the legal and regulatory
 threats to the entire Ethereum ecosystem, the Dublr
 smart contract was not launched on Ethereum, but
 rather on the Polygon blockchain. Polygon is closely
 associated with Ethereum, and is fully
 EVM-compatible, but it operates its own servers and
 has its own block validation algorithm. Critically,
 Polygon does not have a core set of fixed validator
 nodes, and does not rely solely on proof of stake for
 validation, but rather validators are voted in and out
 from a worldwide pool, so that the set of validators is
 constantly changing. The validation algorithm is a
 hybrid that is not a pure proof of stake algorithm.

 (Note that while every effort has been made to
 ensure that Dublr never functions as a security, the SEC
 can make any declaration that they want, and they tend
 to make the majority of their rulings through lawsuits,
 to establish legal precedent, rather than by going
 through the proper legislative process to democratically
 establish securities laws and rulings. Therefore, no
 guarantee can be made that Dublr will never be
 construed to be a security by the US government.)

https://www.sec.gov/corpfin/framework-investment-contract-analysis-digital-assets
https://www.bloomberg.com/news/articles/2022-09-15/gensler-raises-concerns-over-staking-model-used-on-ethereum
https://cryptobriefing.com/sec-makes-bizarre-claim-about-u-s-jurisdiction-over-ethereum-in-court-filing/
https://cryptobriefing.com/sec-makes-bizarre-claim-about-u-s-jurisdiction-over-ethereum-in-court-filing/
https://www.coindesk.com/business/2022/09/19/ico-promoter-ian-balina-charged-with-violating-federal-securities-laws/
https://www.coindesk.com/business/2022/09/19/ico-promoter-ian-balina-charged-with-violating-federal-securities-laws/

 The Dublr dapp
 The frontend of the Dublr exchange is the Dublr
 decentralized application (dapp), which is hosted using
 GitHub Pages, at https://dublr.github.io/ (Fig 2). The
 Dublr dapp is the primary means for interacting with
 the Dublr DEX. The source code of the dapp is
 available on GitHub under an MIT license.

 The Dublr dapp needs to be connected to a
 cryptocurrency wallet such as MetaMask to function.
 Any wallet that supports the WalletConnect protocol
 should work.

 Dublr tokens (ticker: DUBLR) can only be bought
 using network currency, i.e. MATIC, since Dublr is
 deployed on the Polygon network. Users need to
 transfer native Polygon MATIC tokens (not wrapped
 ERC20 MATIC tokens on the Ethereum network) into
 their cryptocurrency wallet before they can buy
 DUBLR tokens on the Dublr DEX.

 The parameters of the buy and sell functions are
 exposed in the dapp frontend, allowing users to easily
 buy tokens and list them for sale without having to
 manually call the backend API (Fig 2).

 The dapp frontend’s “Buy” tab fully simulates the
 Dublr DEX’s buy function, in order to be able to
 generate an accurate count of DUBLR tokens that
 would be bought given some amount of MATIC tokens,

 whether by buying sell orders or via minting. This
 simulation is used to calculate the minimum number of
 tokens that would be expected to be bought with a
 given maximum amount of slippage, expressed as a
 percentage. This allows the Dublr DEX to prevent
 frontrunning attacks, wherein a malicious actor could
 observe a buy request being submitted, and then submit
 their own competing buy request with a higher gas
 price, allowing the malicious transaction to force the
 original transaction to buy tokens at a higher price. It
 also prevents inadvertent slippage due to race
 conditions between multiple legitimate buyers.

 The Dublr DEX
 The Dublr decentralized exchange (DEX) implements a
 handful of functions for buying and listing for sale
 Dublr tokens. Only the sell side of the market is
 implemented in the exchange, i.e. buyers can buy
 orders listed by sellers, but they can’t list their own buy
 orders on the exchange. All buys are market orders.

 Token holders may list their tokens for sale on the
 Dublr DEX using the sell(price, amount) function.
 The parameters specify the list price, and the number of
 DUBLR tokens that should be listed for sale. The price
 is given in “NWC per DUBLR”, where NWC is a
 generic ticker for the network currency (MATIC). Note

https://dublr.github.io/
https://github.com/dublr/dapp

 that this same price would be listed in the form
 DUBLR/NWC on most exchanges, since exchanges list
 the base currency last, but the actual price ratio is the
 reciprocal of this notation.

 Buyers may buy tokens on the exchange using the
 buy(minTokens, allowBuying, allowMinting)

 payable function. Some amount of NWC (MATIC)
 must be attached to the function when it is called, and
 the DEX will proceed to buy sell orders in increasing
 order of price, until either the buyer’s attached payment
 runs out, or there are no more sell orders listed on the
 DEX, or until the current mint price is reached. If the
 sell orders run out or the mint price is reached, then
 new tokens are minted for the buyer at the current mint
 price using the remaining balance of the buyer’s
 payment, increasing total supply. Any balance that is
 insufficient to purchase one DUBLR token is then sent
 back to the buyer as change.

 The minTokens parameter allows the user to
 specify how many tokens they expect to receive for
 their payment, at a minimum, in order to limit slippage
 and to prevent frontrunning attacks. The allowBuying
 and allowMinting parameters allow the user to ignore
 the sell orders on the exchange (if they have a reason to
 do that), or ensure that they do not purchase tokens that
 are minted at an exorbitant price (the mint price grows
 exponentially, so will eventually become exorbitant).

 Finally the DEX includes functions for fetching
 the orderbook, finding the current cheapest sell order,
 and canceling the current sell order. These are all
 accessible via the dapp frontend.

 The Dublr DEX source code is available on
 GitHub under an MIT license.

 Dublr DEX Fees

 When a buyer buys a sell order, 0.15% of the value of
 the sell order is collected as a market fee, and the
 remaining MATIC balance is sent from the buyer to the
 seller, while the purchased DUBLR tokens are
 transferred from the seller to the buyer. This 0.15% fee
 is lower than Uniswap’s standard 0.30% fee, and lower
 than Binance’s current 0.2% total market fee (the sum
 of the market maker of 0.1% and the market taker fee of
 0.1%).

 If new tokens are minted, the amount spent by the
 buyer to mint new tokens is collected as a minting fee,
 in exchange for the DUBLR tokens they receive.

 The Dublr ERC20 implementation
 Dublr’s ERC20 implementation is known as
 OmniToken. The Dublr DEX extends OmniToken to
 provide exchange functionality, however OmniToken
 may be used standalone as a powerful and secure token
 implementation. OmniToken implements the following
 APIs:

 ● ERC20 , for standard token ownership,
 balance-checking, and transfer of tokens.

 ● ERC1363 , for preventing token loss due to a
 token being sent to a contract that cannot receive
 the tokens, by requiring the receiver to
 implement a given interface, and for notifying
 the spender of tokens that the tokens have been
 spent.

 ● ERC4524 , for preventing token loss due to a
 token being sent to a contract that cannot receive
 the tokens, by requiring the receiver to
 implement a given interface if it is not an EOA
 or non-contract wallet (this is a simpler version
 of ERC1363, and also allows sending to wallet
 addresses rather than just contracts).

 ● EIP2612 , the ERC20 permit extension for signed
 approvals of allowances, via EIP712 secp256k1
 signatures.

 Extra OmniToken security measures

 OmniToken has a very strong security model that
 improves over the ERC20 standard in several ways, by
 the addition of secure allowance management APIs, and
 by optionally deviating from the ERC20 standard in
 order to increase security. Note that all deviations from
 the ERC20 standard are disabled by default, but may be
 enabled by the contract owner after deployment, if the
 need arises due to a security incident.

 The OmniToken implementation of EIP2612 is
 more secure than most other implementations, because
 the chainId is inserted dynamically into
 DOMAIN_SEPARATOR every time it is requested, which
 prevents sidechain replay attacks. In most other
 implementations, DOMAIN_SEPARATOR is implemented
 as a constant, calculated from a fixed chainId , rather
 than as a dynamic function, as it is implemented in
 OmniToken.

https://github.com/dublr/dublr/tree/main/contracts/main/Dublr
https://github.com/dublr/dublr/tree/main/contracts/main/Dublr
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-1363
https://eips.ethereum.org/EIPS/eip-4524
https://eips.ethereum.org/EIPS/eip-2612

 The APIs added by OmniToken for mitigating the
 approval double-spend race condition vulnerability in
 ERC20 comprise the following:

 ● The permitting extension proposed and
 adopted by OpenZeppelin , consisting of the
 following API functions:

 increaseAllowance(amount)
 decreaseAllowance(amount)

 ● The atomic compare-and-set permit approval
 mechanism proposed for preventing the
 approve/transferFrom vulnerability in ERC20,
 consisting of the following API function, which
 rejects the approval if the current approval value
 is not equal to currentValue :

 approve(spender, currentValue,
 newValue)

 Note that this proposal adds two new events,
 Transfer and Approval , which were renamed to
 TransferInfo and ApprovalInfo in the
 OmniToken implementation, since events of this
 name already exist in the ERC20 standard, and
 the Ethers library cannot handle contracts that
 have multiple events of the same name but
 different parameter types.

 ● A modified version of the time-limited token
 allowances mechanism proposed for reducing the
 chance that a forgotten allowance could be sent
 to an attacker by means of a clickjacking attack
 or compromised dapp. Note that OmniToken
 deviates from this proposal as it uses seconds
 rather than number of blocks for expiration time,
 since inter-block time intervals can vary.
 Allowances may be set specifically each time an
 allowance is granted, using the following API
 function:

 approveWithExpiration(spender,
 value, expirationTime)

 The expiration time of an allowance (and the
 allowance amount) may be read using the
 following API function:

 allowanceWithExpiration(owner,
 spender)

 Additionally, OmniToken implements a number of
 nonstandard behaviors, which increase security. These
 behaviors are disabled by default, because they
 decrease ERC20 compatibility, but they may be each be
 selectively enabled by the contract owner:

 ● OmniToken can be configured to prevent tokens
 from ever being sent to a contract address, so
 that tokens can only ever be sent to an EOA
 wallet address, preventing accidental burning of
 tokens by sending to an address that cannot
 accept tokens.

 ● OmniToken can be configured to force users to
 set an allowance to zero before it is able to be set
 to a nonzero value, when switching the
 allowance between two nonzero values. This
 prevents the allowance race condition attack.

 ● A default expiration time may be configured for
 allowances granted through the standard ERC20
 API.

 ● OmniToken can be configured to reject unlimited
 allowances of value 2 256 -1. This value is used by
 a number of dapps to grant unlimited allowances
 to a spender. This leaves the entire balance of the
 accountholder vulnerable to theft, if the dapp is
 insecure.

 Collectively, these security extensions and vulnerability
 mitigation measures make OmniToken an extremely
 secure and versatile foundation for token
 implementation.

 The OmniToken source is available on GitHub
 under an MIT license.

 Security
 The security of both the Dublr DEX layer and the
 underlying OmniToken ERC20 library has been
 subjected to extreme levels of scrutiny, to identify any
 and all bugs or vulnerabilities:

 ● The Checks-Effects-Events-Interactions pattern
 is used everywhere in Dublr and OmniToken,
 without exception, to prevent reentrancy attacks.
 This is enforced via function modifiers:
 stateUpdater for functions that modify core
 account state, and extCaller for functions that
 call other contracts. A stateUpdater cannot be
 called deeper in the call stack than an
 extCaller .

 ● The Dublr and OmniToken code is extensively
 unit-tested.

 ● The Dublr and OmniToken code has been fully
 audited by two different 3rd-party auditing
 companies, SolidProof and Omniscia, and has

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#ERC20-increaseAllowance-address-uint256-
https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#ERC20-increaseAllowance-address-uint256-
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://github.com/vrypan/EIPs/blob/master/EIPS/eip-draft_time_limited_token_allowances.md
https://github.com/dublr/dublr/tree/main/contracts/main/OmniToken
https://blog.openzeppelin.com/reentrancy-after-istanbul/
https://github.com/dublr/dublr/tree/main/audits

 passed both audits with the highest standard of
 security rating.

 ● The Dublr and OmniToken code and API are
 copiously documented using the NatSpec rich
 comment syntax, so that all functions, function
 parameters, events, and event parameters are
 explained in EtherScan and in the source code.
 This reduces confusion about how to properly
 and safely call the API. The vast majority of
 Solidity contracts are developed without even a
 fraction of the number of comments.
 Additionally, the code within each function is
 liberally commented.

 ● Function parameter values and invariants are
 checked carefully, and transactions will revert if
 expectations are not met.

 ● All token APIs (ERC20, ERC1363, ERC4524,
 and EIP2612) can be individually enabled or
 disabled by the contract owner/deployer, in case
 a security problem is discovered with one of the
 APIs.

 ● Several classes of vulnerability are prevented by
 using a recent version of the Solidity compiler
 (0.8.17) to compile Dublr:

 ○ Solidity 0.5.0 prevented short address
 attacks.

 ○ Solidity 0.6.0 prevented “phantom
 function calls”, where a contract does not
 define a required function, and the
 fallback function is called instead.
 Phantom function calls have been
 responsible for hundreds of millions of
 dollars of lost tokens in other contracts.
 The receive and fallback payable
 functions are not defined by OmniToken,
 to prevent triggering phantom function
 call issues in other contracts.

 ○ Solidity 0.8.0 prevented overflow and
 underflow attacks by utilizing checked
 arithmetic by default.

 Economics of the mint price
 The Dublr smart contract mints new tokens when
 insufficient tokens are listed for sale below the mint
 price to fulfill a buyer’s request to buy DUBLR tokens.
 Minting tokens is an inherently deflationary activity,
 which is why this behavior effectively sets an upper
 bound on how fast the price of DUBLR tokens may

 grow. Note that there is no lower bound on price,
 because tokens may be listed for sale at any time at any
 price.

 The mint price is the price at which new tokens
 are minted. The mint price grows exponentially, on a
 compound interest curve, with a doubling time of 90
 days. The following polynomial approximation of the
 exponential function is used to calculate the current
 mint price, given the number of seconds since contract
 deployment, using fixed point algebra.

 𝑒 𝑥 =
 𝑛 ∞
lim
→

 1 + 𝑥
 𝑛 () 𝑛

 The value n= 10 is sufficient to give an accuracy to
 within 3% per doubling period.

 Total supply is permanently fixed by the smart
 contract after 30 doubling periods, ~7.5 years at 90 days
 per doubling period.

 The behavior of the mint price should give rise to
 some interesting market dynamics, from an economics
 point of view.

 Note that nothing in this whitepaper should be
 construed to be a promise of future profits -- no future
 profits are promised or even suggested -- or to be a
 prediction of future market behavior. Despite the fact
 that the mint price curve is fixed, The exact shape of the
 future price curve of the DUBLR token is unknown and
 unknowable, and is subject to market forces.

 Nevertheless, it is straightforward to conclude that
 if there is any initial growth in token price, it must be
 fueled by buyer demand for tokens outstripping the
 supply of tokens available from sellers, causing new
 tokens to be minted at the current mint price; whereas
 eventually, the mint price will become exorbitant,
 and/or many tokenholders may list their tokens for sale,
 effectively fixing total supply, because no new tokens
 will be minted. If or when that point is reached,
 DUBLR will trade just like any other ERC20 token,
 with a floating price dependent upon demand vs.
 supply. This transition in market behavior of the
 DUBLR token, from minting new token supply at the
 growing mint price to trading over a fixed supply, will
 probably occur long before the total supply becomes
 forcibly fixed by the smart contract, after 30 doubling
 periods.

 The foregoing postulation about market dynamics
 does not constitute financial guidance or a financial
 prospectus, and must not be taken to be a reliable
 prediction of future market performance.

 Contract deployment information
 Dublr DEX deployment address (Polygon mainnet):
 0x3D739A2db4F42632ca090a7a6713a9A62DB994C0
 (Deployment transaction)

 Deployed from git commit:
 eb50917365bbbb0d948efe656610c5abe06aa3d8

 (The source code of the deployed Dublr smart contract
 can be verified to be the same as the source code in the
 Dublr GitHub repository using PolygonScan)

 Deployment date:
 2022-10-14, 22:06 UTC

 (This starts the clock on the mint price schedule)

 Initial mint price:
 0.0005 MATIC per DUBLR

 (initialMintPriceNWCPerDUBLR_x1e9 == 500000)

 Initial supply:
 Zero DUBLR tokens were minted by the creator of
 Dublr, in order for DUBLR to not be considered a
 security. All supply is minted on demand by buyer
 requests.

 Deployment proxy:
 The Dublr smart contract is intentionally deployed as a
 non-proxied contract, so the code is not changeable or
 upgradeable by the creator of Dublr after deployment.
 Non-proxied contracts are far more secure than proxied
 contracts, as long as the code has passed extensive
 testing and thorough third-party security audits, because
 non-proxied contract can operate in a trustless way.

 Conclusion
 The Dublr smart contract implements both an extremely
 secure ERC20 token, DUBLR, via a new token library,
 OmniToken, and an extremely secure decentralized
 exchange, the Dublr DEX, for buying and selling
 DUBLR tokens. When the DEX does not have enough
 supply of tokens for sale below the current mint price,
 new tokens are minted for the buyer at the current mint
 price. The mint price grows exponentially with a
 doubling time of 90 days. A frontend for the Dublr
 DEX, the Dublr dapp, is hosted on GitHub Pages at
 https://dublr.github.io/ . This dapp allows DUBLR
 tokens to be easily bought or sold for Polygon MATIC
 tokens.

 Developer
 The Dublr core developer is Hiroshi Yamamoto, who
 has a PhD in computer science from MIT, and 35 years
 of software development experience.

 Legal Disclaimers
 ● The name "Dublr" describes only the growth of

 the mint price, not the profitability of DUBLR
 tokens, or the growth of any fair market value of
 DUBLR tokens.

 ● The growth of the mint price sets a hard upper
 bound on how fast the price of DUBLR can grow
 relative to the network currency (MATIC),
 enforced by increasing total supply of tokens to
 meet demand whenever the demand outstrips the
 supply of tokens for sale below the mint price.
 There is no lower bound on price, and minting is
 an inherently deflationary activity, so there are no
 guarantees or promises, express or implied, about
 the profitability of purchasing DUBLR tokens.

 ● The purchasing, sale, and use of DUBLR tokens
 is entirely at the purchaser's own risk. DUBLR
 tokens may not be able to be sold without
 incurring loss, or may not be able to be sold at all
 if there is insufficient demand.

 ● DUBLR Tokens may not be used for any illegal
 purpose, including money laundering.

 ● Collected fees will not be used to fund ongoing
 development, marketing, or any other action
 beneficial to DUBLR token holders, and cannot
 be used to fund ongoing maintenance or
 improvement of the Dublr smart contract code,
 since no changes can be made to the deployed
 Dublr contract code after deployment. Therefore,
 any MATIC spent to mint or sell DUBLR tokens
 does not constitute investment in a common
 enterprise.

 ● By buying, selling, or using DUBLR tokens, you
 signify that you agree to the full Dublr Legal
 Agreement and Disclaimers .

https://polygonscan.com/tx/0xb377809a286aa9498a4d19070ea7170afd5e5156aa635e6d6f12dc8288fb49a8
https://polygonscan.com/address/0x3D739A2db4F42632ca090a7a6713a9A62DB994C0#code
https://dublr.github.io/
https://github.com/dublr/dublr/blob/main/LEGAL.md
https://github.com/dublr/dublr/blob/main/LEGAL.md

