
CryptoBull: A Peer-to-Peer Electronic Cash System

Eduardo Rodriguez Vences
cryptobulltoken@gmail.com

CryptoBull.io
Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be

sent directly from one party to another without going through a financial institution. Digital
signatures provide part of the solution, but the main benefits are lost if a trusted third party is still

required to prevent double-spending. We propose a solution to the double-spending problem
using a peer-to-peer network. The network timestamps transactions by hashing them into an
ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without

redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events
witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of

CPU power is controlled by nodes that are not cooperating to attack the network, they'll
generate the longest chain and outpace attackers. The network itself requires minimal structure.
Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at

will, accepting the longest proof-of-work chain as proof of what happened while they were gone.

1. Introduction
Commerce on the Internet has come to rely almost exclusively on financial institutions serving

as trusted third parties to process electronic payments. While the system works well enough for
most transactions, it still suffers from the inherent weaknesses of the trust based model.

Completely non-reversible transactions are not really possible, since financial institutions cannot
avoid mediating disputes. The cost of mediation increases transaction costs, limiting the

minimum practical transaction size and cutting off the possibility for small casual transactions,
and there is a broader cost in the loss of ability to make non-reversible payments for non-

reversible services. With the possibility of reversal, the need for trust spreads. Merchants must
be wary of their customers, hassling them for more information than they would otherwise need.

A certain percentage of fraud is accepted as unavoidable. These costs and payment
uncertainties can be avoided in person by using physical currency, but no mechanism exists to

make payments over a communications channel without a trusted party.
What is needed is an electronic payment system based on cryptographic proof instead of trust,
allowing any two willing parties to transact directly with each other without the need for a trusted

third party. Transactions that are computationally impractical to reverse would protect sellers
from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In

this paper, we propose a solution to the double-spending problem using a peer-to-peer
distributed timestamp server to generate computational proof of the chronological order of
transactions. The system is secure as long as honest nodes collectively control more CPU

power than any cooperating group of attacker nodes.

2. Transactions
We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to
the next by digitally signing a hash of the previous transaction and the public key of the next

mailto:cryptobulltoken@gmail.com


owner and adding these to the end of the coin. A payee can verify the signatures to verify the
chain of ownership.

Transaction
Hash

Owner 1's Public Key
Owner 3's Public Key

Owner 0's SiTnature
Hash
Hash
Verify
SiTn
Verify
SiTn

Transaction
Hash

Owner 2's Public Key
Owner 1's SiTnature

The problem of course is the payee can't verify that one of the owners did not double-spend the
coin. A common solution is to introduce a trusted central authority, or mint, that checks every

transaction for double spending. After each transaction, the coin must be returned to the mint to
issue a new coin, and only coins issued directly from the mint are trusted not to be

double-spent. The problem with this solution is that the fate of the entire money system depends
on the company running the mint, with every transaction having to go through them, just like a

bank.
We need a way for the payee to know that the previous owners did not sign any earlier

transactions. For our purposes, the earliest transaction is the one that counts, so we don't care
about later attempts to double-spend. The only way to confirm the absence of a transaction is to

be aware of all transactions. In the mint based model, the mint was aware of all transactions
and decided which arrived first. To accomplish this without a trusted party, transactions must be
publicly announced [1], and we need a system for participants to agree on a single history of the
order in which they were received. The payee needs proof that at the time of each transaction,

the majority of nodes agreed it was the first received.

3. Timestamp Server
The solution we propose begins with a timestamp server. A timestamp server works by taking a

hash of a block of items to be timestamped and widely publishing the hash, such as in a
newspaper or Usenet post [2-5]. The timestamp proves that the data must have existed at the
time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp

in its hash, forming a chain, with each additional timestamp reinforcing the ones before it.

4. Proof-of-Work
To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a

proof- of-work system similar to Adam Back's Hashcash [6], rather than newspaper or Usenet
posts. The proof-of-work involves scanning for a value that when hashed, such as with



SHA-256, the hash begins with a number of zero bits. The average work required is exponential
in the number of zero bits required and can be verified by executing a single hash.

For our timestamp network, we implement the proof-of-work by incrementing a nonce in the
block until a value is found that gives the block's hash the required zero bits. Once the CPU
effort has been expended to make it satisfy the proof-of-work, the block cannot be changed
without redoing the work. As later blocks are chained after it, the work to change the block

would include redoing all the blocks after it.
The proof-of-work also solves the problem of determining representation in majority decision

making. If the majority were based on one-IP-address-one-vote, it could be subverted by
anyone able to allocate many IPs. Proof-of-work is essentially one-CPU-one-vote. The majority

decision is represented by the longest chain, which has the greatest proof-of-work effort
invested in it. If a majority of CPU power is controlled by honest nodes, the honest chain will

grow the fastest and outpace any competing chains. To modify a past block, an attacker would
have to redo the proof-of-work of the block and all blocks after it and then catch up with and

surpass the work of the honest nodes. We will show later that the probability of a slower attacker
catching up diminishes exponentially as subsequent blocks are added.

To compensate for increasing hardware speed and varying interest in running nodes over time,
the proof-of-work difficulty is determined by a moving average targeting an average number of

blocks per hour. If they're generated too fast, the difficulty increases.


