

1

CROWN STERLING

CRYPTOGRAPHIC SECURITY

PROTOCOL
Freedom Lies in the Sovereignty of the Digital Domain

CrownRNG™, CrownEncrypt™, Crown SovereignOTP™, CrownEncryptOTP™

for Quantum Resistant Blockchains and Messaging

2021

2

Contents

I. CrownRNG™ ... 3
1- The Daemon .. 4
2- The Xeno Unit: A Non-Sequential Randomizer ... 5
3- The Functions Table .. 7
4- The Random Bit Generator (RBG) ... 8
CrownRNG Randomness Tests Results ... 10

II. CrownEncrypt™ ... 21
The Security Layers of the CrownEncrypt Architecture .. 24

III- Crown Sterling One-Time Pad Cryptographic Solution ... 26
IV- CrownSovereignOTP for Quantum Resistant State Transition Functions (STF) of the
Blockchain ... 28

Pay To One-Time Pad Key (P2OTPK) ... 28
V- CrownEncryptOTP™ for Quantum Secure Messaging ... 30

Appendix ... 31
A- Partial List of Functions that Generate Irrational Numbers: ... 31
B- NIST Tests Results for the Cosine Function: .. 31
C- Dieharder Full Testing Report .. 32

References ... 36

Crown Sterling Limited LLC
Newport Beach, CA
USA
P: 949.260.1702
F: 949.260.1705
www.CrownSterling.io

3

In this paper, we lay out the software architecture of Crown Sterling encryption products, which include
CrownRNG, CrownEncrypt, CrownSovereignOTP for quantum-resistant state transition functions of the
Crown Sterling blockchain, and CrownEncryptOTP for quantum-resistant secure messaging.

CrownRNG is a novel cryptographically secure random number generator (RNG). It exploits the proven
randomness of irrational numbers to produce highly randomized strings of numbers. CrownEncrypt is an
encryption platform designed to encrypt and secure the handling of data. It can be used as a stand-alone, or
it can be incorporated within existing encryption platforms to provide more robust and reliable data
handling. CrownRNG feeds into a 512 bit Elliptic-curve Diffie-Hellman key exchange protocol, coupled to
an AES-based encryption algorithm, to deliver a highly secured data handling environment.

CrownRNG also feeds into CrownSovereignOTP and CrownEncryptOTP, which utilize the one-time pad
encryption protocol that is proven to be quantum-computing resistant. CrownSovereignOTP is used to
secure the state transition function of the Crown Sterling blockchains, while CrownEncryptOTP is used to
secure messaging with multi-factor authentication and partial key transport for optimum security.

I. CrownRNG™

CrownRNG exploits the by-default randomness of irrational numbers. Mathematically speaking, irrational
numbers are defined as numbers that can't be expressed in terms of ratios of two integers. They are proven
to have digital sequences, also known as mantissas, extending to infinity without ever repeating. Therefore,
they are excellent sources for true randomness1,2. Mathematical functions known to generate irrational
numbers include the square roots of non-perfect square numbers (NPSN), e.g., √20, √35, square roots of all
prime numbers, etc., and also trigonometric functions having natural numbers for their arguments, among
many others. (Please refer to Appendix A for a partial list of functions proven to generate irrational
numbers).

CrownRNG uses the mantissas of irrational square root values. Irrational numbers can be produced by
appending 2, 3, 7, or 8 to any integer to ensure that it is not a perfect square. As a result, this non-perfect
square number will have an irrational square root. Therefore, it is sufficient to prove that any integer ending
in 2, 3, 7, or 8 is not a perfect square and any integer that is not a perfect square has an irrational square
root.

Proof: Any integer ending in 2, 3, 7, or 8 is not a perfect square:

We can easily prove by contradiction that no integer can be squared to produce an integer ending in 2, 3, 7,
and 8. Assume that some integer exists such that squaring it produces an integer ending in 2. Assume the
same for 3, 7, and 8.

• If an integer ends in 1, its square will also end with a 1.
• If an integer ends in 2, its square will always end in 4
• If an integer ends in 3, its square will always end in 9
• If an integer ends in 4, its square will always end in 6
• If an integer ends in 5, its square will always end in 5
• If an integer ends in 6, its square will always end in 6
• If an integer ends in 7, its square will always end in 9

4

• If an integer ends in 8, its square will always end in 4
• If an integer ends in 9, its square will always end in 1
• If an integer ends in 0, its square will always end in 0

Therefore, squaring an integer will always produce an integer ending in 1, 4, 5, 6, 9, or 0. This excludes 2,
3, 7, and 8. This contradicts our assumption that some integer exists such that squaring it produces an integer
ending in 2, 3, 7, or 8. Therefore, no perfect square integer can end in 2, 3, 7, or 8.

Proof: Any integer that is not a perfect square has an irrational square root:

Consider the polynomial f(x) = x² - n, where n is a positive integer. Then √n is one of the roots of f(x).
Suppose √n = p/q, where p and q are coprime positive integers, so that their largest common factor is 1. We
note that p² and q must also be coprime. We have p²/q² = n, or p² = n×q² = q×(n×q). This means that p²
is divisible by q. Since q is clearly divisible by q too, we conclude that q is a common factor of p² and q.
But p² and q are coprime, so q must be 1. This implies that √n = p. We have just proved that if √n is rational,
then it must be an integer. Clearly, √n is an integer only when n is a perfect square. Consequently, if n is
not a perfect square, then I is neither an integer nor a rational number, concluding that it must be an irrational
number3,4.

As discussed in Dr. Johnson's and Dr. Leeming's paper2, the mantissas of irrational values performed
exceptionally well on various entropy tests, distinguishing the CrownRNG from pseudo-random number
generators.

CrownRNG is made of four main components:

1- Entropy gathering Daemon

2- Xeno unit.

3- Functions Table.

4- Random Bits Generator (RBG).

1- The Daemon

The Daemon gathers entropy from many random system processes, including the pc metrics, such as the
Heap, Memory, and stack, along with mouse movements and clicks, keyboard strokes, etc. The Daemon
ensures 2048 bits of random data where the random processes are hashed and rehashed into three binary
outputs that work as input features. The three outputs are then passed on to the Xeno unit, which generates
another set of three random numbers.

5

Figure 1

Figure 1: A schematic representation of the Daemon workflow.

2- The Xeno Unit: A Non-Sequential Randomizer

This unit generates the randomized parameters needed by the system. The unit is initialized by the Daemon,
using its metrics as initial features to predict new labels via linear regression estimator and then captures
the randomized bits of the predictions' mantissas. One sub-unit of Xeno (MusicSU) will transform the
predicted numeric values into a set of three numbers labeled octave, note, and tempo. These three values
are then converted, via digital root arithmetic, into specific ranges such that they can be utilized by the
Functions Table. The other sub-unit (MathSU) creates random NPSNs. The square roots of these numbers
create irrational numbers with infinite mantissas. These mantissas are truncated to specific bit-lengths and
then passed on to the RBG as seeds.

a- The Music Sub-Unit (MusicSU):

The main workflow of the MusicSU can be summarized as follows: First, M random metrics are collected
by the Daemon. These metrics will be collected in intervals of 1 millisecond for a total of 5 seconds. This
will generate 5000 data points for each value. Next, each metric will be divided into three parts, with two
parts used to predict the third. This process is repeated two times for a total of three sets of predicted values.
One predicted value would be allocated to the note variable and hence be truncated to mod(8), in other
words, eight values from 0 to 7. The other one will transform into the tempo using mod(7), and finally, the
third will transform into the octave, using mod(13). These three values will then pass on to the function
table, as will be explained later. Other numeric variables can be obtained by using different mods as well,
such as for the last digit and the range variables.

CPU/
Environment

Xeno

Memory Heap Stack

Feature 2Feature 1

Feature 3

Entropy Gathering Daemon

MouseKeyboard

6

Figure 2: A schematic representation of the MusicSU workflow.

b- The Math Sub-Unit (MathSU):

The MathSU shares the same supervised machine learning algorithm with MusicSU. However, for MathSU,
the three predicted values are truncated using mod(10). The operation is repeated, and the values are
concatenated to form one single number of a specific length designated by the programmer. When needed,
a single digit of either [2, 3, 7, 8] is randomly chosen and added to the end of the concatenated number to
ensure that the number is not a perfect square, as explained above. The final step is to apply the square-root
function to the number with the result passed on to the next element.

In summary, the Xeno unit outputs the following parameters:

• The irrational seed: an infinite irrational number truncated to a specific length.

• The note, tempo, and octave parameters, in the ranges of (0-7), (0-6), and (0-12), respectively.

• Last digit number: this is a list of four numbers [2, 3, 7, 8] where one of them will be randomly
added to the end of the privately shared key to make sure it becomes a non-perfect square number
(NPSN).

• Range number: this is a number, from 1 to 1 million (minus 1), that determines the starting index
in the mantissa of the square root of the NPSN number.

Below is a schematic rendering of the workflow of the Xeno unit.

Estimator/
Truncator

Metric 1 Metric 2 Metric 3

NoteTempo

Octave

Daemon

7

Figure 3: A schematic representation of the Xeno unit general workflow.

3- The Functions Table

The Functions Table is defined by a set of horizontal and vertical variables that are mathematical functions
proven to always produce perfect irrational numbers. The arguments of these functions are not fixed,
determined by the random internal states, mainly the timestamp of the current time, as well as the tempo
variable. The tempo, note, and octave parameters coming out of the Xeno unit will be used to determine
which two cells on the vertical and horizontal axis will be utilized for the current run. The output of these
cells (the irrational mantissas) are truncated accordingly and used to compute the arithmetic mode through
which the RBG will operate. The current model uses square root functions on the horizontal axis of the
table and trigonometric ones on the vertical axis.

There are seven cells on the horizontal axis (Figure 3), with the argument of the square roots being the
product of the tempo value, the timestamp (TS), and a non-square number (A) as follows:
"𝑇𝑆 × (𝑇𝑒𝑚𝑝𝑜 + 1) × 𝐴. (This non-square number A is passed from the MathSU; however, it is not the
same as the N number used to generate the seed.) The horizontal scale is made of 104 cells corresponding
to 13 octaves, with each octave divided into eight notes. The octave parameter selects one of the 13 octaves,
and the note parameter selects which note of this specific octave will be used. Each note corresponds to a

Daemon

MusicSUMathSU

Note (0-7)
Tempo (0-6)
Octave (0-12)

Irrational
Seed = √N

Truncation

RBG Functions
Table

8

trigonometric function having an argument made of the time stamp divided by a specific frequency value,
TS/fr.

Figure 4: A schematic representation of a small portion of the Functions Table.

The trigonometric functions, along with the frequencies of the notes, are listed in the table below.

Function Frequencies

Sin 432 450 468 252 270 288 306 324 342 360 378 396 414
Cos 864 900 936 504 540 576 612 648 684 720 756 792 828
Tan 1728 1800 1872 1008 1080 1152 1224 1296 1368 1440 1512 1584 1656
Ctan 3456 3600 3744 2016 2160 2304 2448 2592 2736 2880 3024 3168 3312
Sec 6912 7200 7488 4032 4320 4608 4896 5184 5472 5760 6048 6336 6624
Csc 13824 14400 14976 8064 8640 9216 9792 10368 10944 11520 12096 12672 13248
Sin 27648 28800 29952 16128 17280 18432 19584 20736 21888 23040 24192 25344 26496
Cos 55296 57600 59904 32256 34560 36864 39168 41472 43776 46080 48384 50688 52992

Table 1: A list of the trigonometric functions used along with the music frequencies.

When the two irrational values of the horizontal and the vertical cells (the square root and trig function) are
calculated, they will be truncated to specific lengths and then passed on to the RBG as variables I1 and I2,
along with the seed (the truncated number N).

4- The Random Bit Generator (RBG)

The RBG utilizes a specific mathematical function that takes the seed output of the Xeno unit as its initial
argument and the two truncated irrational numbers of the Functions Table (I1 and I2) as the arithmetic mod
parameters. The RBG then iterates on each calculated value to calculate new ones that are concatenated to
create a randomized sequence of bits.

N1

C1 C2 C3 C4 C5 C6 C7

...

C = √(A×TS×(Tempo+1))

Tr
ig

-F
un

ct
io

n(
TS

/fr
eq

ue
nc

y)

N2

N3

N4

N5

N6

N7

9

The RBG general design is based on the cryptographically secure Blum-Blum-Shub (BBS) generator5. The
primary difference between the original BBS and CrownRNG relates to the numerical basis for the
arithmetic mod calculation. In the original BBS, the mod is computed from the product of two prime
numbers, whereas CrownRNG uses the truncated irrational numbers coming from the Functions Table.

The general mathematical flow of the modified BBS generator works as follows:

1- Two truncated irrational numbers, I1 and I2 of specific bit-length are chosen such that each is
congruent to 3 modulo 4: 𝑝 ≡ 𝑞 ≡ 3	𝑚𝑜𝑑(4).

2- The two truncated irrational numbers are multiplied to generate n, the arithmetical mode by which
the generator will perform its calculations.

3- A random integer s (the seed) is generated from the Xeno unit.
4- The seed will initiate the generation process through the operation 𝑥! = 𝑠"𝑚𝑜𝑑(𝑛).
5- The function 𝑥#$% = 𝑥#"𝑚𝑜𝑑(𝑛) is then used to iterate on each previously calculated value,

generating new values for every iteration and outputting a string of numbers: x1, x2, x3, …, xk.
6- These output values are converted into a string of binary bits.
7- The bit-parity of each binary number is determined depending on the type of parity, even or odd (0

or 1).
8- Finally, the parity digits are concatenated to form the desired CSPRN, depending on the required

bit-length of the key, which also determines the level of security: Y = y1y2y3… yk.

As mentioned above, the only modification the RBG introduces to the original BBS is replacing prime
numbers with irrational ones. The usage of prime numbers in the original BBS is necessary if we want to
have the ability to reverse the direction of the generator, as in the case when the BBS system is used as an
encryption/decryption algorithm. However, as we do not want to reverse the operation in our system, there
is no problem with using numbers that are not prime. In fact, this introduces additional security to the
system because when we compare the limited amount of prime numbers having specific bit-length to the
infinite amount of potential irrational numbers of the same bit-lengths, the infinity factor introduces an extra
layer of security to the RBG against cyber-attacks that try to predict these values.

10

Figure 5: A schematic representation of the RBG workflow.

CrownRNG Randomness Tests Results

Many statistical testing suites were designed to test the randomness level of random number generators.
The most important of these tests are TestU01, NIST, PractRand, and DIEHARDER. The tests are evaluated
depending on a specific statistical value called the p-value. A p-value extremely close to 0 or 1 indicates a
failure, while more moderate values are considered a pass. If a theoretically ideal source of randomness
were given to the tests, the p-values would be uniformly distributed in the interval [0, 1], and so values
extremely close to either limit would be very unlikely. P-values in the range of 0.001 to 0.999 are considered
unremarkable. Values in the range of 0.00001 to 0.99999 would also not be terribly surprising given that
we are running hundreds of tests. However, much more extreme values such as p-values less than 10-9 or
greater than 1 -10-9 would be suspicious and would suggest that the RNG is failing to emulate some aspect
of random behavior.

NIST tests suite is made of 15 different tests designed to check the randomness level of numbers generated
from the RNG6. (The Cumulative Sum Test generates two values, Forward and Backward, increasing the
total number of p-values to 16). To pass the Test, the random numbers should generate a statistical p-value
that is greater than a specific threshold, usually chosen to equal 0.01. Furthermore, for all the numbers
tested, the percentage criteria of a successful pass for each of NIST's tests should not be less than 98% of
all tested numbers. (The irrational functions used in the CrownRNG unit are also tested for their randomness
by the NIST tests suite and passed the threshold value (0.01) for all the tests. Refer to Appendix B for NIST
test results for one such function.)

Below we list the NIST tests results for 1000 numbers generated by the CrownRNG system, with each
number having a length of one million binary bits. The tests were conducted locally by Crown Sterling
Staff and implemented using the Python programming language.

Seed (s) x0 = s2 mod(n)

I1×I2	=	n Mod (n)

xi+1 = xi2 mod(n)

Binary +	Parity
Conversion

Y	=	y1y2y3...

Ite
r(i

)

Xeno

Functions
Table

I1

I2	

Tempo

Octave+Note

The RBG

11

Test Name P-Value Variance Success %
Frequency 0.503087 0.084981 99.1
Block Frequency 0.504021 0.084437 98.9
Run 0.497848 0.084397 99.2
Longest Run 0.490239 0.082727 99.3
Matrix 0.499644 0.083488 99.0
Spectral 0.499322 0.086307 98.8
Non-overlapping Template 0.492563 0.082768 99.1
Overlapping Template 0.492579 0.08619 99.1
Universal 0.481775 0.078071 98.6
Complexity 0.519357 0.082535 99.0
Serial 0.49152 0.07987 99.4
Entropy 0.502573 0.083398 98.7
Cumulative Sum Forward 0.497417 0.08383 99.0
Cumulative Sum Backward 0.508077 0.084272 98.9
Random Excursion 0.509958 0.016384 100
Random Excursion Variant 0.506634 0.022137 100

Table 2: NIST test results for the CrownRNG.

As evident from the above table, the average p-values for the 1000 tested numbers are around 0.5, right in
the middle of the range [0, 1], as expected from a well-designed PRNG. Additionally, the success rate for
all the tests is above 98%, as demanded by NIST.

Dieharder tests on CrownRNG's outcome were performed by Crown Sterling. When running the
randomness testing, the Dieharder test suite recommends having a minimum dataset size of 15GB for each
analysis. Datasets from CrownRNG were created in the 15GB – 20GB range by concatenating individual
100MB entropy files from separate runs of the tool. These individual 100MB data files were created on
multiple Ubuntu virtual machines running the CrownRNG Docker container V1.0.3 and written to the local
file system. A total of 10 datasets of ~20GB each, representing a cumulative total of ~200GB of data, were
tested. Below is the result of the testing. As obvious from the results, CrownRNG performed well for all
the tests. For the full report, please refer to Appendix C.

Table 3: Dieharder battery test results for CrownRNG, performed by Crown Sterling.

12

Additionally, a smaller data size of CrownRNG output was tested by Dr. John Cook and for all the three
types of randomness tests, U01, Dieharder, and PractRand.

1- U01 Test

TestU01 is the most academically respected RNG test suite at this time7. The suite comes in three versions:
small crush, crush, and big crush. The small crush uses on the order of a gigabyte of data, and in that sense,
it is not small. For our case, this Test was run by John D. Cook, Ph.D., and he reported that all tests were
passed. Below are the U01 Test full results.

• Smarsa_BirthdaySpacings test:
N = 1, n = 5000000, r = 0, d = 1073741824, t = 2, p = 1
Number of cells = d^t = 1152921504606846976
Lambda = Poisson mean = 27.1051
Total expected number = N*Lambda : 27.11
Total observed number : 27
p-value of test : 0.53
CPU time used : 00:00:01.21

• Test sknuth_Collision calling smultin_Multinomial
HOST = Silver, Linux
32-bit stdin
smultin_Multinomial test:
N = 1, n = 5000000, r = 0, d = 65536, t = 2,
Sparse = TRUE
GenerCell = smultin_GenerCellSerial
Number of cells = d^t = 4294967296
Expected number per cell = 1 / 858.99346
EColl = n^2 / (2k) = 2910.383046
Hashing = TRUE
Collision test, Mu = 2909.2534, Sigma = 53.8957
Test Results for Collisions
Expected number of collisions = Mu : 2909.25
Observed number of collisions : 2961
p-value of test : 0.17
Total number of cells containing j balls
j = 0 : 4289970257
j = 1 : 4994082
j = 2 : 2953
j = 3 : 4
j = 4 : 0
j = 5 : 0

• Sknuth_Gap test:
N = 1, n = 200000, r = 22, Alpha = 0, Beta = 0.00390625
Number of degrees of freedom : 1114
Chi-square statistic : 1063.19
p-value of test : 0.86

• Sknuth_SimpPoker test:
N = 1, n = 400000, r = 24, d = 64, k = 64
Number of degrees of freedom : 19
Chi-square statistic : 27.58

13

p-value of test : 0.09
• Sknuth_CouponCollector test:

N = 1, n = 500000, r = 26, d = 16
Number of degrees of freedom : 44
Chi-square statistic : 50.60
p-value of test : 0.23

• Sknuth_MaxOft test:
N = 1, n = 2000000, r = 0, d = 100000, t = 6
Number of categories = 100000
Expected number per category = 20.00
Number of degrees of freedom : 99999
Chi-square statistic : 1.01e+5
p-value of test : 0.05
Anderson-Darling statistic : 0.065
p-value of test : 0.93

• Svaria_WeightDistrib test:
N = 1, n = 200000, r = 27, k = 256, Alpha = 0, Beta = 0.125
Number of degrees of freedom : 41
Chi-square statistic : 40.53
p-value of test : 0.49

• Smarsa_MatrixRank test:
Number of degrees of freedom : 3
Chi-square statistic : 3.71
p-value of test : 0.29
CPU time used : 00:00:00.53
Generator state:

• Sstring_HammingIndep test:
N = 1, n = 500000, r = 20, s = 10, L = 300, d = 0
Counters with expected numbers >= 10
Number of degrees of freedom : 2209
Chi-square statistic : 2173.19
p-value of test : 0.70
Swalk_RandomWalk1 test:
N = 1, n = 1000000, r = 0, s = 30, L0 = 150, L1 = 150
Test on the values of the Statistic H
Number of degrees of freedom : 52
ChiSquare statistic : 64.15
p-value of test : 0.12
Test on the values of the Statistic M
Number of degrees of freedom : 52
ChiSquare statistic : 34.02
p-value of test : 0.97

• Test on the values of the Statistic J
Number of degrees of freedom : 75
ChiSquare statistic : 89.70
p-value of test : 0.12

• Test on the values of the Statistic R
Number of degrees of freedom : 44
ChiSquare statistic : 29.80
p-value of test : 0.95

• Test on the values of the Statistic C
Number of degrees of freedom : 26
ChiSquare statistic : 27.09
p-value of test : 0.40

14

========= Summary results of SmallCrush =========
Version: TestU01 1.2.3
Generator: 32-bit stdin
Number of statistics: 15
Total CPU time: 00:00:10.36
All tests were passed

Table 4: U01 Test results for CrownRNG data.

2- DIEHARDER Test

George Marsaglia's DIEHARD "battery" was the first widely used RNG test suite. The suite has been
maintained and extended by Robert Brown and others under the name DIEHARDER8. This suite is
commonly run because it is so well known, even though TestU01 is more highly regarded in the academic
community. The DIEHARDER test suite was run by John D. Cook, using version 3.31.1, using all the
default options, by giving it 1 GB of random bits generated by the CrownRNG.

All tests passed. However, three tests, one instance of rgb permutations and two instances of rgb lagged
sum, passed with a weak pass, generating p-values of 0.99837, 0.00149, and 0.00068. These are not such
extreme values and are to be expected when running a large number of tests. Below are the full results of
the Test.

Test_name ntup tsamples psamples p-value Assessment
diehard_birthdays 0 100 100 0.3726455 PASSED
 diehard_operm5 0 1000000 100 0.9507281 PASSED
 diehard_rank_32x32 0 40000 100 0.2128847 PASSED
The file file_input_raw was rewound 1 times

 diehard_rank_6x8 0 100000 100 0.7168254 PASSED
The file file_input_raw was rewound 1 times

 diehard_bitstream 0 2097152 100 0.8986398 PASSED
The file file_input_raw was rewound 2 times

 diehard_opso 0 2097152 100 0.8855053 PASSED
The file file_input_raw was rewound 2 times

 diehard_oqso 0 2097152 100 0.6678726 PASSED
The file file_input_raw was rewound 2 times

 diehard_dna 0 2097152 100 0.9865553 PASSED
The file file_input_raw was rewound 2 times

diehard_count_1s_str 0 256000 100 0.7042336 PASSED
The file file_input_raw was rewound 3 times

diehard_count_1s_byt 0 256000 100 0.5736274 PASSED
The file file_input_raw was rewound 3 times

 diehard_parking_lot 0 12000 100 0.8022002 PASSED
The file file_input_raw was rewound 3 times

 diehard_2dsphere 2 8000 100 0.3493633 PASSED
The file file_input_raw was rewound 3 times

 diehard_3dsphere 3 4000 100 0.8124341 PASSED

15

The file file_input_raw was rewound 4 times

 diehard_squeeze 0 100000 100 0.6349244 PASSED
The file file_input_raw was rewound 4 times

 diehard_sums 0 100 100 0.0268951 PASSED
The file file_input_raw was rewound 4 times

 diehard_runs 0 100000 100 0.2016708 PASSED
 diehard_runs 0 100000 100 0.4288304 PASSED
The file file_input_raw was rewound 4 times

 diehard_craps 0 200000 100 0.948407 PASSED
 diehard_craps 0 200000 100 0.0408707 PASSED
The file file_input_raw was rewound 12 times

 marsaglia_tsang_gcd 0 10000000 100 0.2599033 PASSED
 marsaglia_tsang_gcd 0 10000000 100 0.4730578 PASSED
The file file_input_raw was rewound 12 times

 sts_monobit 1 100000 100 0.5136588 PASSED
The file file_input_raw was rewound 12 times

 sts_runs 2 100000 100 0.9639255 PASSED
The file file_input_raw was rewound 12 times

 sts_serial 1 100000 100 0.5473606 PASSED
 sts_serial 2 100000 100 0.1930377 PASSED
 sts_serial 3 100000 100 0.2471209 PASSED
 sts_serial 3 100000 100 0.9262692 PASSED
 sts_serial 4 100000 100 0.7346105 PASSED
 sts_serial 4 100000 100 0.7899912 PASSED
 sts_serial 5 100000 100 0.5861151 PASSED
 sts_serial 5 100000 100 0.569177 PASSED
 sts_serial 6 100000 100 0.3839097 PASSED
 sts_serial 6 100000 100 0.6381691 PASSED
 sts_serial 7 100000 100 0.7448842 PASSED
 sts_serial 7 100000 100 0.804561 PASSED
 sts_serial 8 100000 100 0.8183399 PASSED
 sts_serial 8 100000 100 0.8295544 PASSED
 sts_serial 9 100000 100 0.7499303 PASSED
 sts_serial 9 100000 100 0.809182 PASSED
 sts_serial 10 100000 100 0.1525207 PASSED
 sts_serial 10 100000 100 0.0328435 PASSED
 sts_serial 11 100000 100 0.1174684 PASSED
 sts_serial 11 100000 100 0.4339114 PASSED
 sts_serial 12 100000 100 0.3079395 PASSED
 sts_serial 12 100000 100 0.3618067 PASSED
 sts_serial 13 100000 100 0.8066997 PASSED
 sts_serial 13 100000 100 0.7378393 PASSED
 sts_serial 14 100000 100 0.0899083 PASSED

16

 sts_serial 14 100000 100 0.2961106 PASSED
 sts_serial 15 100000 100 0.7296562 PASSED
 sts_serial 15 100000 100 0.1508948 PASSED
 sts_serial 16 100000 100 0.4669664 PASSED
 sts_serial 16 100000 100 0.0671334 PASSED
The file file_input_raw was rewound 12 times

 rgb_bitdist 1 100000 100 0.8573912 PASSED
The file file_input_raw was rewound 12 times

 rgb_bitdist 2 100000 100 0.6990537 PASSED
The file file_input_raw was rewound 12 times

 rgb_bitdist 3 100000 100 0.7451708 PASSED
The file file_input_raw was rewound 12 times

 rgb_bitdist 4 100000 100 0.1124013 PASSED
The file file_input_raw was rewound 13 times

 rgb_bitdist 5 100000 100 0.3132411 PASSED
The file file_input_raw was rewound 13 times

 rgb_bitdist 6 100000 100 0.9467392 PASSED
The file file_input_raw was rewound 14 times

 rgb_bitdist 7 100000 100 0.9594866 PASSED
The file file_input_raw was rewound 14 times

 rgb_bitdist 8 100000 100 0.7924018 PASSED
The file file_input_raw was rewound 15 times

 rgb_bitdist 9 100000 100 0.9157191 PASSED
The file file_input_raw was rewound 16 times

 rgb_bitdist 10 100000 100 0.5395454 PASSED
The file file_input_raw was rewound 17 times

 rgb_bitdist 11 100000 100 0.2418238 PASSED
The file file_input_raw was rewound 18 times

 rgb_bitdist 12 100000 100 0.576704 PASSED
The file file_input_raw was rewound 18 times

rgb_minimum_distance 2 10000 1000 0.3693933 PASSED
The file file_input_raw was rewound 18 times

rgb_minimum_distance 3 10000 1000 0.6119019 PASSED
The file file_input_raw was rewound 18 times

rgb_minimum_distance 4 10000 1000 0.3693909 PASSED
The file file_input_raw was rewound 18 times

rgb_minimum_distance 5 10000 1000 0.0792296 PASSED
The file file_input_raw was rewound 18 times

 rgb_permutations 2 100000 100 0.6973623 PASSED
The file file_input_raw was rewound 18 times

 rgb_permutations 3 100000 100 0.9983674 WEAK
The file file_input_raw was rewound 18 times

 rgb_permutations 4 100000 100 0.0961262 PASSED

17

The file file_input_raw was rewound 19 times

 rgb_permutations 5 100000 100 0.3519567 PASSED
The file file_input_raw was rewound 19 times

 rgb_lagged_sum 0 1000000 100 0.292929 PASSED
The file file_input_raw was rewound 20 times

 rgb_lagged_sum 1 1000000 100 0.1262539 PASSED
The file file_input_raw was rewound 21 times

 rgb_lagged_sum 2 1000000 100 0.8598643 PASSED
The file file_input_raw was rewound 22 times

 rgb_lagged_sum 3 1000000 100 0.0144612 PASSED
The file file_input_raw was rewound 24 times

 rgb_lagged_sum 4 1000000 100 0.7765675 PASSED
The file file_input_raw was rewound 26 times

 rgb_lagged_sum 5 1000000 100 0.4394164 PASSED
The file file_input_raw was rewound 29 times

 rgb_lagged_sum 6 1000000 100 0.4212405 PASSED
The file file_input_raw was rewound 32 times

 rgb_lagged_sum 7 1000000 100 0.0014851 WEAK
The file file_input_raw was rewound 35 times

 rgb_lagged_sum 8 1000000 100 0.7676263 PASSED
The file file_input_raw was rewound 39 times

 rgb_lagged_sum 9 1000000 100 0.6756103 PASSED
The file file_input_raw was rewound 43 times

 rgb_lagged_sum 10 1000000 100 0.8372619 PASSED
The file file_input_raw was rewound 48 times

 rgb_lagged_sum 11 1000000 100 0.3911788 PASSED
The file file_input_raw was rewound 53 times

 rgb_lagged_sum 12 1000000 100 0.4920459 PASSED
The file file_input_raw was rewound 58 times

 rgb_lagged_sum 13 1000000 100 0.3267564 PASSED
The file file_input_raw was rewound 63 times

 rgb_lagged_sum 14 1000000 100 0.9464163 PASSED
The file file_input_raw was rewound 69 times

 rgb_lagged_sum 15 1000000 100 0.0006816 WEAK
The file file_input_raw was rewound 76 times

 rgb_lagged_sum 16 1000000 100 0.48635 PASSED
The file file_input_raw was rewound 82 times

 rgb_lagged_sum 17 1000000 100 0.0300186 PASSED
The file file_input_raw was rewound 89 times

 rgb_lagged_sum 18 1000000 100 0.9675033 PASSED
The file file_input_raw was rewound 97 times

 rgb_lagged_sum 19 1000000 100 0.0505593 PASSED
The file file_input_raw was rewound 105 times

18

 rgb_lagged_sum 20 1000000 100 0.8654232 PASSED
The file file_input_raw was rewound 113 times

 rgb_lagged_sum 21 1000000 100 0.4340315 PASSED
The file file_input_raw was rewound 121 times

 rgb_lagged_sum 22 1000000 100 0.1940784 PASSED
The file file_input_raw was rewound 130 times

 rgb_lagged_sum 23 1000000 100 0.1102014 PASSED
The file file_input_raw was rewound 140 times

 rgb_lagged_sum 24 1000000 100 0.9884602 PASSED
The file file_input_raw was rewound 149 times

 rgb_lagged_sum 25 1000000 100 0.6760483 PASSED
The file file_input_raw was rewound 159 times

 rgb_lagged_sum 26 1000000 100 0.5673114 PASSED
The file file_input_raw was rewound 170 times

 rgb_lagged_sum 27 1000000 100 0.0156134 PASSED
The file file_input_raw was rewound 181 times

 rgb_lagged_sum 28 1000000 100 0.7224232 PASSED
The file file_input_raw was rewound 192 times

 rgb_lagged_sum 29 1000000 100 0.1861631 PASSED
The file file_input_raw was rewound 203 times

 rgb_lagged_sum 30 1000000 100 0.8136724 PASSED
The file file_input_raw was rewound 215 times

 rgb_lagged_sum 31 1000000 100 0.7300451 PASSED
The file file_input_raw was rewound 228 times

 rgb_lagged_sum 32 1000000 100 0.5328815 PASSED
The file file_input_raw was rewound 228 times

 rgb_kstest_test 0 10000 1000 0.8888545 PASSED
The file file_input_raw was rewound 228 times

 dab_bytedistrib 0 51200000 1 0.805461 PASSED
The file file_input_raw was rewound 228 times

 dab_dct 256 50000 1 0.7330565 PASSED
Preparing to run test 207. ntuple = 0

 The file file_input_raw was rewound 229 times

 dab_filltree 32 15000000 1 0.6329858 PASSED
 dab_filltree 32 15000000 1 0.4053801 PASSED
Preparing to run test 208. ntuple = 0

 The file file_input_raw was rewound 229 times

 dab_filltree2 0 5000000 1 0.8434582 PASSED
 dab_filltree2 1 5000000 1 0.9402829 PASSED
Preparing to run test 209. ntuple = 0

 The file file_input_raw was rewound 229 times

 dab_monobit2 12 65000000 1 0.4629416 PASSED

Table 5: Dieharder test results for CrownRNG data.

19

3- PractRand Test

John D. Cook tested the Crown Sterling CrownRNG using the same data described above using the
PractRand test suite9, version 0.94, and using all the default options. The PractRand suite starts by testing
1 kilobyte of data. It then doubles the amount of data at each iteration and will eventually use as much data
as it is given. When the tests ran on 16 megabytes of data, the tests passed, but the results were reported as
unusual with a p-value of 0.99946. This is, as reported, an unusual p-value, but is not a cause for alarm as
later stages of testing are more rigorous, and the tests ran on up to the full gigabyte of data provided without
reporting any anomalies.

RNG_test using PractRand version 0.94

RNG = RNG_stdin seed = unknown

test set = core

rng=RNG_stdin seed=unknown

length= 1 kilobyte (2^10 bytes) time= 0.2 seconds

no anomalies in 6 test result(s)

rng=RNG_stdin seed=unknown

length= 2 kilobytes (2^11 bytes) time= 0.3 seconds

no anomalies in 8 test result(s)

rng=RNG_stdin seed=unknown

length= 4 kilobytes (2^12 bytes) time= 0.4 seconds

no anomalies in 12 test result(s)

rng=RNG_stdin seed=unknown

length= 8 kilobytes (2^13 bytes) time= 0.5 seconds

no anomalies in 25 test result(s)

rng=RNG_stdin seed=unknown

length= 16 kilobytes (2^14 bytes) time= 0.8 seconds

no anomalies in 30 test result(s)

rng=RNG_stdin seed=unknown

length= 32 kilobytes (2^15 bytes) time= 1.0 seconds

no anomalies in 45 test result(s)

rng=RNG_stdin seed=unknown

length= 64 kilobytes (2^16 bytes) time= 1.3 seconds

no anomalies in 54 test result(s)

rng=RNG_stdin seed=unknown

length= 128 kilobytes (2^17 bytes) time= 1.7 seconds

no anomalies in 63 test result(s)

rng=RNG_stdin seed=unknown

length= 256 kilobytes (2^18 bytes) time= 2.1 seconds

no anomalies in 69 test result(s)

rng=RNG_stdin seed=unknown

length= 512 kilobytes (2^19 bytes) time= 2.5 seconds

no anomalies in 84 test result(s)

20

rng=RNG_stdin seed=unknown

length= 1 megabyte (2^20 bytes) time= 2.9 seconds

no anomalies in 94 test result(s)

rng=RNG_stdin seed=unknown

length= 2 megabytes (2^21 bytes) time= 3.3 seconds

no anomalies in 109 test result(s)

rng=RNG_stdin seed=unknown

length= 4 megabytes (2^22 bytes) time= 3.7 seconds

no anomalies in 124 test result(s)

rng=RNG_stdin seed=unknown

length= 8 megabytes (2^23 bytes) time= 4.2 seconds

no anomalies in 135 test result(s)

rng=RNG_stdin seed=unknown

length= 16 megabytes (2^24 bytes) time= 4.7 seconds

 [Low1/8]BCFN(2+0 13-Jun
...and 150 test result(s) without anomalies

rng=RNG_stdin seed=unknown

length= 32 megabytes (2^25 bytes) time= 5.4 seconds

no anomalies in 167 test result(s)

rng=RNG_stdin seed=unknown

length= 64 megabytes (2^26 bytes) time= 6.4 seconds

no anomalies in 179 test result(s)

rng=RNG_stdin seed=unknown

length= 128 megabytes (2^27 bytes) time= 8.1 seconds

no anomalies in 196 test result(s)

rng=RNG_stdin seed=unknown

length= 256 megabytes (2^28 bytes) time= 10.8 seconds

no anomalies in 213 test result(s)

rng=RNG_stdin seed=unknown

length= 512 megabytes (2^29 bytes) time= 15.7 seconds

no anomalies in 229 test result(s)

rng=RNG_stdin seed=unknown

length= 1 gigabyte (2^30 bytes) time= 25.2 seconds

 no anomalies in 248 test result(s)

Table 6: PractRand test results for CrownRNG data.

21

II. CrownEncrypt™

CrownEncrypt utilizes the keys generated from CrownRNG to encrypt data and securely exchange it, along
with the keys needed for decryption. CrownRNG does not depend on CrownEncrypt to operate, while the
latter takes its input from CrownRNG (or any key generating unit), which is essential to its operation.

CrownEncrypt is basically made of two main units:

i. The CrownRNG Unit
ii. The Encryption Unit

As explained above, CrownRNG delivers highly randomized binary bits suitable to be used as private keys
required by the Encryption unit, which is made of two main elements:

1- Key Exchange Protocol: This element generates and controls the secure exchange of
encryption keys through which the data is encrypted, whether it is a password, a
confidential message, credit card information, etc.

2- Encryption Algorithm: this element encrypts the data and then locks it with the keys
generated by the Key Exchange Protocol.

1- The Key Exchange Protocol.

CrownEncrypt implements the Diffie-Hellman10,11 public-key exchange protocol, which is built on the
principle of trapdoor functions, being mathematical functions that can be easily calculated in one direction;
however, reversing the calculation is very difficult and requires an enormous amount of time and computing
power. One such function is the product of two prime numbers; for large prime numbers, computing the
product is an easy and fast operation; however, factorizing the product to find the two prime numbers is
very difficult and resource-expensive. This method is primarily used in the RSA encryption12. Nevertheless,
prime factorization is becoming increasingly vulnerable due to the advancement in the processing power
of computers, especially with the advent of quantum computers, as well as novel discoveries in prime
number patterns, which enable faster factorizing algorithms13.

Another trapdoor function utilizes the algebraic properties of elliptic curves14,15, where adding a point on
the curve to itself k times is very easy; however, figuring out k from the result is very complicated. Elliptic-
curve Cryptography (ECC) is more secure than RSA and requires smaller encryption keys for the same
level of security. When combined, ECC-DH becomes a key agreement protocol that allows two parties,
each utilizing the same elliptic curve, to establish a shared secret key over an insecure channel.

The ECC-DH protocol works as follows:

1- Both communicating parties generate their own private keys: α, β. (These private keys are generated
by the random number generator, which, in our case, is CrownRNG.)

2- Next, they generate their own public keys, α×G and β×G, by utilizing the algebraic rules of elliptic
curves, where the generator point G is a point on the curve. (This is the trap door of elliptic curves,
as calculating α×G is easy. However, even when G is known, figuring out α from the product is
very difficult.)

3- These two public keys, α×G and β×G, are exchanged between the two parties insecurely.

22

4- Finally, each party multiplies the other public key by its own private key to create the new private
encryption/decryption key: α×β×G, shared only by the two communicating parties

Figure 6: A schematic representation of the ECC-DH workflow.

\

2- The Encryption Algorithm

This unit utilizes the AES encryption algorithm to encrypt the message using the key obtained from the
previous unit. AES stands for Advanced Encryption Standard. It is an encryption algorithm developed in
2001 to satisfy the NIST specification for the encryption of electronic data. It is based on a design principle
known as a Substitution–Permutation Network and is efficient in both software and hardware

requirements16.

The first step of the cipher is to put the data into an array. Next, specific cipher transformations are repeated
over multiple encryption rounds. The first transformation is the substitution of data using a substitution
table; the second transformation shifts data rows; the third mixes columns. The last transformation is
performed on each column using a different part of the encryption key.

CrownRNG

Ecc
α ×G

Private key
α

Alice Bob

Private key
β

Ecc
β ×G

α ×G

β ×G

encryption key
α× β ×G

decryption key
 β×α ×G

CrownRNG

23

Figure 7: A schematic representation of the AES encryption workflow.

The full operational flow of CrownEncrypt can be summarized as follows:

1- The Xeno unit generates an irrational seed along with the other random parameters required for the
operation of the Functions Table.

2- The random parameters will feed into the Functions Table to determine the working cells along the
X and Y axis, as well as the arguments of these functions, which will lead to the generation of two
new irrational numbers, which are then truncated to a specific length.

3- The three truncated random numbers will feed into the RBG, which will create the required key.
4- The key will feed into the ECC-DH protocol, from which it will create a public key shared with the

other party to whom the encrypted message will be sent.
5- Both parties will create from each other's public key a new private key that is known only to both

communicating parties.
6- These keys will be used by the AES system to securely encrypt/decrypt the message.

ECC/DH

Secret Key
α× β ×G

Plain Text

Cypher Transformations

Cyphered Text

24

Figure 8: A schematic representation of the CrownEncrypt general workflow.

The Security Layers of the CrownEncrypt Architecture

CrownEncrypt incorporates five different layers of security, three in CrownRNG and two in CrownEncrypt.
This multi-layering design renders it very secure and robust against determined cyber-attacks. These five
layers are as follows:

1- The 1st layer is that of the Xeno unit. This is the innermost layer where the algorithm makes sure
that its output variables, e.g., the seed, are not only highly random but also resilient to any
determined attack.

2- The 2nd layer is that of the Functions Table, which receives its parameters from Xeno to produce
two truncated irrational numbers from specific functions. The arguments of these functions are also
randomly determined by the Xeno unit as well as local time stamps. This makes predicting these
truncated irrational numbers a very challenging endeavor in both software and hardware resources.
And similar to the 1st layer, the Functions Table system is designed such that compromising one
specific state will not automatically jeopardize past and future ones.

3- The 3rd layer is that of the RBG, which exploits the mathematically proven properties of the BBS
generator in deterring determined and engineered attacks.

4- The 4th layer is that of the ECC-DH system, where we use the most secure and NIST recommended
elliptic curves, using 512-bit encryption keys, along with the Diffie-Hellman protocol, to deliver a
highly secure and reliable key-exchange system.

Xeno

RBG

Fu
nc

tio
ns

 T
ab

le

ECC-DH

Private
 Key

AES

AES
Key

Param
eters

Irrational
Seed

CrownRNG

CrownEncrypt

Irrational
Numbers

The Encryption Unit

25

5- Finally, the 5th layer is that of the AES encryption, which ensures perfect encryption of the
messages, locked by the keys generated by the ECC-DH system.

These five nested layers create a secured hierarchy that is guaranteed to deliver superb security protection
for the encrypted message as well as for the randomly generated keys.

Figure 9: A schematic representation of CrownEncrypt's five layers of security.

The Xeno Unit

The Functions Table

The RBG/BBS

ECC/DH

AES

CrownRNG

The Encryption Unit

CrownEncrypt Security Layers

26

III- Crown Sterling One-Time Pad Cryptographic Solution

One-Time Pad Cryptography (OTP) is encryption that cannot be cracked17,18. It requires the use of a one-
time pre-shared key/pad having the same size as, or longer than, the message being sent (hence the name
one-time pad). It is first described by Frank Miller19, dating back to the late 1800s.

The message to be encrypted is paired with the secret pad/key such that each bit of the message is combined
with a corresponding bit from the pad/key using modular addition (the XOR function in our case). The
resulting ciphertext will be impossible to decrypt or break given the following four conditions are all met:

1- The key must be truly random.
2- The key must be at least as long as the plaintext.
3- The key must never be reused in whole or in part.
4- The key must be kept completely secret.

All the above conditions are met in the Crown Sterling OTP solutions, where the keys are generated from
CrownRNG, which, as we illustrated above, produces highly randomized streams of numbers. Additionally,
the ECC-DH key exchange protocol used is the standard in secured key-sharing.

The main reason why OTP cryptography is not in wide usage, even though it offers unbreakable encryption,
is due to the difficulty arising from sharing the pad/key, which is as large as or larger than the message
itself. Crown Sterling solved this problem by generating keys using the square root function where the
problem of sharing the whole key is reduced to simply sharing the number that generates it instead, the
NPSN, which is much smaller than the whole message and can be securely and easily exchanged using the
usual ECC-DH protocol.

There is a misconception that OTP is a stream cipher which arises from the fact that stream ciphers, in many
ways, mimic OTP. Note that the deviations stream ciphers have from OTP are what compromise their
security. OTP requires a random key that is equal in length to the data being encrypted. The key contains
random digits, and any given string of digits cannot be used more than once, which ensures the highest
level of security. The digits in the key come from the mantissas of NPSNs. These mantissas are proven to
not contain repeating strings and have been shown to perform very well in various statistical tests for
randomness. The CrownRNG random number generator produces 2.1472 billion bits (netting 870 MB) of
random key material. Multiple NPSNs can be used to derive square root values that can be combined to
achieve longer data transfers. In contrast, stream ciphers use a 128 or 256-bit key, therefore generating a
pseudorandom keystream that may contain repeating strings, distinguishing them from a true one-time pad.

Crown Sterling OTP solution is made of three basic units:

1- CrownRNG.
2- Key exchange protocol unit.
3- Message encryption unit.

1. CrownRNG

This is the same RNG explained above. It supplies the next unit with a key of highly random bits.

27

2. Key Exchange Protocol Unit

This is mainly an ECC-DH unit responsible for securing the sharing of the required metrics, coming mainly
from CrownRNG, such as the index numbers and the NSPN.

3. Encryption Unit

Instead of encrypting the message using the AES algorithm, as in CrownEncrypt, the key will undergo
mathematical operations first and then be passed on to an XOR-based algorithm instead. First, the key is
converted into a 10-base numeric system. The random, last digit provided by CrownRNG will be attached
to its end to ensure it is converted into an NPSN. Next, the square root of this number is calculated.
Therefore, in our case, the pad/key length is equal to that of the message. The message and the key are then
converted into binary forms before they are added together using the XOR-based function. In its simplest
form, the XOR logical function adds the zeroes and ones of the binary format as follows:

 XOR
1 1 0
1 0 1
0 1 1
0 0 0

Table 7: The logical outcome of the XOR function.

Crown Sterling OTP solution is utilized in two different versions. One version is CrownSovereignOTP,
which provides a quantum-secured environment for the state transition functions of blockchains, while the
other, CrownEncryptOTP, provides the same level of quantum security for messaging exchange.

28

IV- CrownSovereignOTP for Quantum Resistant State Transition Functions (STF) of the
Blockchain

There is a threat to the security of blockchains as all blockchains use authentication algorithms for enabling
participants to secure transactions. All the authentication algorithms currently rely on modern non-
quantum-resistant cryptography protocols, such as Bitcoin's Pay to Public Key (P2PK) algorithm, which is
an Elliptic Curve Digital Signature Algorithm. These authentication mechanisms are becoming more and
more vulnerable due to the looming threat of quantum computers because of their ability to perform, using
Shor's algorithm20, large number factorization required to decrypt message text. Shor's algorithm represents
a material risk to current blockchain cryptographic protocols and their STFs. The STF is the logic of the
blockchain that determines how the state changes when a block is processed (here, 'state' refers to data that
persists between blocks). The term STF is often used synonymously to blockchain runtime.

Below, we present the Crown Sterling One-Time Pad Blockchain technology, CrownSovereignOTP. We
also describe the Pay to One-Time Pad Key (P2OTPK), a quantum-resistant authentication protocol, and
other integral components of CrownSovereignOTP.

Pay To One-Time Pad Key (P2OTPK)

The security of P2OTPK is based on irrational numbers. P2OTPK relies on cryptographically secure
random number generation. The components of P2OTPK are:

1- NPSN: The non-perfect square number.
2- INX: The index of the mantissa.
3- LEN: the length of the one-time pad key.
4- OTPK: the one-time pad key.
5- ID: The id of the receiver.

The protocol of P2OTPK consists of two main processes:

1- Locking/Sending: The process of locking a transaction.
2- Unlocking / Receiving: The process of unlocking a transaction.

The process of locking/sending a transaction goes as follows:

1) Generate the required components: NPSN, INX, LEN.
2) Square root the NPSN. Let the result be SRNPSN.
3) Derive the OTPK by indexing into the mantissa of SRNPSN using INX as the starting point and

ending at INX + LEN. This is the OTPK.
4) Send the desired value (e.g., token amount) as a transaction with the ID and OTPK to the One-

Time Pad blockchain
5) Offline transfer the NPSN, LEN, and INX to the owner of ID.

The process of unlocking/receiving a transaction goes as follows:

1- Use NPSN, INX and LEN received from the sending party offline.

29

2- Send a transaction with the desired value to unlock (e.g., token amount) from the locked transaction
with the NPSN, INX, and LEN.

3- When the One-Time Pad blockchain receives the transaction, it extracts the NPSN, INX, and LEN
then initiates the authentication process to unlock the value in the locked transaction as follows:
a) Square root the NPSN. Let the result be SRNPSN.
b) Derive the OTPK by indexing into the mantissa of SRNPSN starting at and ending at INX +

LEN.
c) Compare the derived OTPK with the OTPK in the locked transaction.
d) If equal, the locked transaction gets unlocked, and the user transactions execute successfully,

thus accessing the value of the locked transaction (e.g., token amount).
e) e. If not equal, the transaction gets rejected.

Below is a schematic representation of the workflow of CrownSovereignOTP.

Figure 10: The workflow of CrownSovereignOTP.

Alice
Locking

Bob
Unlocking

CrownRNG

OPTVA

Transaction
Index

N
SPN

...
O

TP key,
A

m
ount,...

Blockchain

Offline
NSPN, Index, ...

Transaction

Transaction
Hash

Transaction
Hash

Locking Unlocking

Transfer

Lock

Store OTP
key

OPTVA

Unlock Reject

30

V- CrownEncryptOTP™ for Quantum Secure Messaging

CrownEncryptOTP utilizes all the elements of the Crown Sterling OTP solution. Additionally, and for
maximum security, a multi-factor authentication and partial key transport method is implemented. In this
method, CrownRNG creates two NPSN; one is used directly (online) through ECC-DH to create a private
key, shared by the two parties (Alice and Bob), and through which the index is encrypted. The other NPSN
is transformed into a QR code and transferred indirectly (offline) from one party (Alice) to the other (Bob)
using a multi-factor authentication method. Thus Bob receives the index using an online ECC-DH, while
he receives the NPSN through an offline ECC-DH. When the two partial keys are combined, the index and
the NSPN, the full key is generated, and the encrypted message can be decrypted.

Below is a schematic drawing for the CrownEncryptOTP workflow.

Figure 11: A schematic representation of the workflow of the CrownEncryptOTP with a partial-key distribution.

CrownRNG

ECC/DH

Secret Key
α× β ×G

Math Transformations:
10-Base conversion, Last Digit,

Square Root, Range

Binary Conversion +
XOR Function

Encrypted
Message

Public Key
α× G

Public Key
G× β

1-Time
Pad-Key

Alice Bob

Secret Key
α× β ×G

Decrypted
Message

Reversed XOR

1-Time
Pad-Key

Message

Index

Math
Transformations:

10-Base conversion,
Last Digit, Square

Root, Range

O
nl
in
e

O
ff
lin
e

NPSN

ECC/DH

Index

NPSN

QR Code

31

Appendix

A- Partial List of Functions that Generate Irrational Numbers:

The Square Root Function:

Taking the square root of a non-square integer creates an irrational number, such as √2,√3, 𝑒𝑡𝑐.	This is
guaranteed when prime numbers or non-sqaure numbers are used.

The Logarithm Function:

This method uses the natural log of integers: 𝑙𝑜𝑔&𝑥. One required condition is that n, the order of the log,
has one prime factor, at least, that is not also a factor of x.

The Power Function:

This method rests on the fact that raising any algebraic number y to the power of another irrational algebraic
number x (𝑦') is sure to generate an irrational number.

The Inverse-Power Function:

Where 𝑦
!
" is irrational for both integers y and x except when y is the xth power of some integer, of course.

The Trigonometric Function:

Based on Niven's theorem, the tan(x), cos(x), and every other trigonometric function of any rational number
x that is not equal to 0, is irrational.

Polynomial Function:

Where the solution of a polynomial equation of order n is either a natural number or irrational.

𝑥& + 𝑐&(%𝑥&(% +⋯+ 𝑐! = 0

B- NIST Tests Results for the Cosine Function:

Below are the NIST tests' results for the cos(1450) trigonometric function and for a single number with a
mantissa length of 1660957 binary digits. Notice how the random number generates a p-value larger than
0.01 for all the tests.

Test Name P-Value
Frequency 0.099978
Block Frequency 0.184093
Run 0.260697
Longest Run 0.388854
Matrix 0.185961
Spectral 0.693646
Non-overlapping Template 0.532113
Overlapping Template 0.090185
Universal 0.933074
Complexity 0.180485

32

Serial 0.706031
Entropy 0.606385
Cumulative Sum Forward 0.249214
Cumulative Sum Backward 0.543305
Random Excursion 0.279346
Random Excursion Variant 0.661555

C- Dieharder Full Testing Report

When running the randomness testing, the Dieharder test suite recommends having a minimum dataset size
of 15GB for each analysis. Datasets from Archimedes were created in the 15GB – 20GB range by
concatenating individual 100MB entropy files from separate runs of the tool. These individual 100MB data
files were created on multiple Ubuntu virtual machines running the Archimedes Docker container V1.0.3
and written to the local file system. A total of 10 datasets of ~20GB each, representing a cumulative total
of ~200GB of data, were tested.

The Dieharder test flags used were as follows:

• dieharder -a -g 201 -k 2 -Y 1 -f <Input File>

§ -a = run all tests
§ -g 201 = use external data file for entropy
§ -k 2 = use high precision on p-samples
§ -Y 1 = Resolve Ambiguity (RA) – this flag will rerun any tests that return an initial weak result.

RA mode adds p-samples (usually in blocks of 100) until the test result ends up solidly not weak
or proceeds to unambiguous failure. Any initial or subsequent failure of any individual test
constituted an immediate failure of that individual Test with no RA rerun initiated.

§ -f = Filename of input datafile

The ENT test flags were as follows:

• ent -c -t <Input File>

§ -c = create a table of value occurrences from 0-255 with % distribution
§ -t = terse mode with output written in CSV format

For each Dieharder and ENT test run, the output results were piped to a text file and saved to the local file
system.

Dieharder Testing Results

All datasets were processed through Dieharder suite representing thousands of individual tests.
The following tests were performed:

TEST NAMES
• diehard_birthdays marsaglia_tsang_gcd
• diehard_operm5 sts_monobit
• diehard_rank_32x32 sts_runs
• diehard_rank_6x8 sts_serial

33

• diehard_bitstream rgb_bitdist
• diehard_opso rgb_minimum_distance
• diehard_dna rgb_permutations
• diehard_count_1s_str rgb_lagged_sum
• diehard_count_1s_byt rgb_kstest_test
• diehard_parking_lot dab_bytedistrib
• diehard_2dsphere dab_dct
• diehard_3dsphere dab_filltree
• diehard_squeeze dab_filltree
• diehard_sums dab_filltree2
• diehard_runs dab_filltree2
• diehard_craps dab_monobit2

Note: Tests in yellow have been flagged by the tool's developer as having suspect or unreliable results.
Results for these tests were included for completeness.

Table 8: Dieharder battery test results for CrownRNG, performed by Crown Sterling.

The following table represents the results for the first 4 Archimedes datasets. Note that when running the
sts_serial tests, if a single test reported weak results, the entire set of 30 sts_serial tests are rerun during the
RA process. All 30 individual sts_serial tests must pass or fail for the process to move to the next test in the
sequence.

34

Table 9: Dieharder battery test results for CrownRNG, performed on four different data sets.

35

All datasets were processed through ENT test tool. All the individual tests (Entropy, Chi-square, Mean,
Monte Carlo Pi, and Serial Correlation) passed. The distribution of the bit values of 0 and 1 were 50%/50%
with a general range of +/- 0.0002%. The distribution of byte values from 00-FF also showed linear
distribution with ~0.3906 – 0.3607% per value. The following table represents the results for each of the
first four datasets.

EntropySet01 EntropySet02 EntropySet03 EntropySet04

File Size 19.8GB 19.0GB 20GB 20.1GB
Entropy 8 8 8 8
Chi-Square 242.3568 284.1494 266.0102 218.0463
Mean 127.5001 127.5002 127.4996 127.4993
Monte Carlo Pi 3.141578 3.141587 3.141627 3.141602
Serial Corr. -4E-06 0 0.000005 0.000003

Table 10: The entropy results of four different data sets of CrownRNG

ENT Testing Results

All datasets were processed through ENT test tool. All the individual tests (Entropy, Chi-square, Mean,
Monte Carlo Pi, and Serial Correlation) passed. The distribution of the bit values of 0 and 1 were 50%/50%
with a general range of +/- 0.0002%. The distribution of byte values from 00-FF also showed linear
distribution with ~0.3906 – 0.3607% per value. The following table represents the results for each of the
first four datasets:

Test Result Files

Each of the datasets and the individual Dieharder and ENT results for each dataset are available from Crown
Sterling.

36

References

[1] Luka Milinković , Marija Antić , and Zoran Čiča. Pseudo-random number generator based on irrational
numbers. 10th International Conference on Telecommunication in Modern Satellite Cable and Broadcasting
Services (TELSIKS) (2011).

[2] Johnson, B. R., Leeming, D. J., A Study of the Digits of π, e, and Certain Other Irrational Numbers.
University of Victoria, Canada (1990).

[3] Hardy, G. H. Quadratic Surds. 10th ed. Cambridge University Press (1967).

[4] Hughes, C. R.. Irrational Roots. The Mathematical Gazette, 83(498), 502–503. (1999)

[5] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator. SIAM J.
Comput. Vol. 15, No. 2 (1986).

[6] Andrew Rukhin et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications. NIST Special Publication 800-22 (2010).

[7] P. L'Ecuyer and R. Simard, TestU01: A C Library for Empirical Testing of Random Number
Generators ACM Transactions on Mathematical Software, Vol. 33, article 22, 2007.

[8] Practically Random. http://pracrand.sourceforge.net.

[9] Robert G. Brown et al. Dieharder: A Random Number Test Suite. http:
//webhome.phy.duke.edu/~rgb/General/dieharder.php Based on earlier work by George Marsaglia on the
DIEHARD test suite.

[10] Diffie, W., and Hellman, M. New directions in cryptography. IEEE Trans. Inform. Theory IT-22
(1976).

[11] Diffie, W., and Hellman, M. Exhaustive cryptanalysis of the NBS data encryption standard. Computer
10 (1977).

[12] R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM, Vol 21 (1978).

[13] Robert E. Grant and Talal Ghannam. Accurate and Infinite Prime Prediction from Novel Quasi-Prime
Analytical Methodology. Arxiv.org, arXiv:1903.08570 (2019).

[14] Jeremy Wohlwend. Elliptic curve cryptography: pre and post-quantum. Conference Proceedings
(2016).

[15] Sheetal Kalra and Sandeep K. Sood. Elliptic Curve Cryptography: Current Status and Research
Challenges. Springer, Communications in Computer and Information Science, vol 169 (2011).

[16] Bruce Schneier; John Kelsey; Doug Whiting; David Wagner; Chris Hall; Niels Ferguson; Tadayoshi
Kohno; et al. The Twofish Team's Final Comments on AES Selection (2000).

[17] Schneier, Bruce. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley
and Sons, Inc. (1996).

[18] Menezes, Alfred J., Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography, CRC Press (1997).

37

[19] Miller, Frank. Telegraphic code to ensure privacy and secrecy in the transmission of telegrams.
C.M. Cornwell (1882).

[20] Shor, P.W. Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th
Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124–134, (1994).

