
COLONY
Technical White Paper
2018-02-16 — commit cb41534

Alex Rea∗ Daniel Kronovet† Aron Fischer‡ Jack du Rose§

Organizations, for the Internet
The Colony Network is an Ethereum-based protocol for creating and operating Internet Organi-
zations. In a traditional organization, rules are defined in policy documents and enforced by a
management hierarchy; in an Internet Organization, rules are defined in code and enforced by a
blockchain mining process.

Automating business rule enforcement makes organizational models which previously involved
high coordination costs, such as Holacracy, more feasible. More exciting still, this automation en-
ables entirely new and previously impossible organizational forms to come into being. By reducing
the trust needed for people to collaboratively manage shared funds and enforce standards of con-
duct, it becomes possible to coordinate the entirety of an organization’s operations via market-style
interactions, rather than through the internal processes of a firm.

An Internet Organization’s operations are not necessarily analogous to traditional company
processes, such as project management, budgeting, and decision-making, although they certainly
can be, and indeed Colony’s own application (https://colony.io/connect) is modeled that way.
We anticipate the Colony protocol will be used to build economic incentives and decision-making
mechanisms for platforms whose content or value proposition is created by users without top down
decision-making of any kind. Examples may include a photo-sharing app which meritocratically
divides revenue between users, a driver-run P2P ridesharing service, crowdsourced claims handling
in an insurance dApp, or a merchants’ guild in a virtual world.

This is primarily a technical document describing the current design of the Colony protocol,
focusing on on-chain actions and affordances. In many cases off-chain functionality, such as mes-
saging or other forms of signalling, will be essential for the proper functioning of the organization.
However, as that communication is not consensus-relevant, it does not need to happen on-chain, so
the specifics of how it might occur are not treated here.

Onward!

∗alex@colony.io
†krono@colony.io
‡aron@colony.io
§jack@colony.io

1

Contents
1 Overview 3

1.1 Preamble . 3
1.2 Theory of the firm . 3
1.3 Confidence and trust . 4

2 Structure of a Colony 6
2.1 Domains and permissions . 6
2.2 Funding and expenditures . 8
2.3 Internal tokens . 10
2.4 Revenue and rewards . 11
2.5 The reputation system . 13
2.6 Managing stakes . 17
2.7 Upgradability and security . 19
2.8 Arbitrary transactions . 20

3 Extending Functionality 21
3.1 Tasks . 21
3.2 Funding queues . 23
3.3 Budget box . 26
3.4 Motions and disputes . 27
3.5 Miscellaneous . 32

4 The Colony Network 35
4.1 Revenue model . 35
4.2 The Metacolony and CLNY . 36

5 Reputation Mining 38
5.1 Merkle-Patricia trees and proofs . 38
5.2 The Reputation Tree . 39
5.3 Calculating the new root hash . 39
5.4 Submission of a new root hash . 40
5.5 Dealing with false submissions . 41
5.6 Calculating reputation updates . 47
5.7 Denial of service attacks . 48
5.8 Costs and rewards of mining . 50
5.9 Emergency shutdown . 51

6 Conclusion 52

References 52

A Appendices 53
A.1 Gas-Efficient Reputation Penalty in Dispute Resolution 53
A.2 Reputation Decay Calculation Details . 56

2

1 Overview

1.1 Preamble
This paper is split into sections corresponding to logically separate components of the Colony
Network. The Colony Network’s features however, are in some cases quite interdependent, making
it difficult to explain a feature without referencing another before it has been introduced. This
overview therefore provides a high level overview of Colony’s capabilities to contextualise the more
technical expositions which follow.

Section 1, this introduction, lays out the organizational theory which inspires and guides the
project. Section 2, Structure of a Colony, details the basic functionality of a colony, which
can be thought of as an organization’s operating system. Much like a computer operating system
provides a secure interface for managing the system’s underlying resources, a colony provides a
secure interface for managing an organization’s underlying resources. As with a computer operating
system, a colony can be extended with specific applications to implement specific behaviors. We
call these applications Extensions, and are the subject of Section 3. Section 4 is concerned
with the Colony Network as a whole, covering the governance, operation, and token economics
of the Colony Network and the special Metacolony. Section 5 is specifically concerned with the
Reputation Mining process, which powers Colony’s reputation system.

Throughout this document various numerical parameters are specified. These values will be
subject to review as we gather evidence from the field, and any parameter values proposed in this
document should be seen as good-faith suggestions, not final judgments. Similarly, nothing in
this document should be interpreted as a guarantee that any described functionality will be either
developed or deployed. The version of the Colony Network that is live on Ethereum mainnet should
be considered complete as-is, and the reader should not assume, irrespective of the content of this
document, that any existing functionality will be upgraded beyond its current state.

1.2 Theory of the firm
Companies exist to coordinate the production of goods and services. Transaction Cost Economics
(TCE) theory, popularised by Ronald Coase’s ‘Theory of the Firm’ [1], postulates that companies
form, employ people, and invest in capital because there is a threshold at which it is more efficient to
control the factors of production directly than to coordinate production via the market mechanism,
once transaction costs are accounted for. These transaction costs come in three flavours:

• Search & information: Costs associated with finding information to inform decisions, and
discovering and evaluating suppliers.

• Bargaining: These are costs associated with reaching an agreement with a supplier. Bar-
gaining costs can be very low (e.g. buying a coffee), or very high (e.g. buying a company).

• Monitoring & enforcement: The costs of ensuring adherence to the terms of an agreement
(e.g. that widgets are manufactured on time and to the agreed quality). People often deviate
from the agreed terms due to chance, negligence, or malice, and potentially high enforcement
costs (e.g. legal fees) are required to resolve disputes.

TCE theory states that firms are more efficient than the market mechanism at coordinating pro-
duction due to imperfect information and bounded rationality. Given perfect information, companies

3

would not be necessary, as market forces would provide the necessary mechanisms to incentivise and
coordinate production — everyone would know the exact value of their and other’s contributions.
As this is not the case in traditional markets, these knowledge and trust barriers are overcome
by due diligence and contracts, and require a legal system to provide recourse when things go
wrong. These processes are expensive, and so traditional firms often find that replacing free-market
bargaining with command-and-control hierarchy makes them more efficient and competitive.

As new technologies have improved the diversity and flow of information, new organizations are
emerging which are able to merge the efficient decision-making of a market with the shared value-
capture of a traditional firm. Gig economy platforms (e.g. Uber, Airbnb), market networks (e.g.
eBay, Amazon Marketplace), and cryptocurrencies (e.g. Bitcoin, Ethereum) have demonstrated that
if the product is sufficiently well defined, and the supply sufficiently large, fungible, or diverse, then it
is possible to dramatically reduce the transaction costs of the market mechanism by making search
and information discovery easy, bargaining straightforward, and having policing and enforcement
provided essentially for free by the platform. This has enabled these new platforms to be orders of
magnitude more efficient than had they attempted to coordinate equivalent supply within the hard
boundaries of a firm.

1.3 Confidence and trust
The firm is able to coordinate complex production at scale by organising labour into a management
hierarchy. Seniority within the hierarchy (ideally) represents the amount of confidence the company
has in the employee, and in the Platonic ideal of a firm, confidence is a pure function of competence.
The more confident the company is in their employee, the higher their competence, and thus the
greater their responsibility, influence, and compensation.

Across the internet however, it’s hard to have confidence in other people. Up to now we’ve
relied on platform operators to mediate relationships between parties in online transactions (often
via various rating and reputation systems), and in some cases (such as payment processing), to
underwrite the risk of those transactions. On the blockchain it’s even harder, as all you know
about a counterparty is that they control a public key. It is difficult to imagine how a traditional
organization or hierarchy could exist in this pseudonymous, adversarial environment. A blockchain
has no geographical boundaries and cannot differentiate between who or what controls public keys.
As Richard Gendal Brown put it in his twist on Peter Steiner’s classic meme: ‘On the blockchain,
nobody knows you’re a fridge.’

Internet Organizations must thus assume the lowest common denominator: that every member
is rationally self interested and focussed entirely on maximising personal utility and profit, and
given incentives accordingly. This gets to the heart of Colony: a protocol seeking to facilitate the
same kind of meritocratic division of labour and authority that the idealised model of the corporate
hierarchy should, except from the bottom up, and less prone to error. Decentralised, self-organising
companies, where decision-making power derives from a fairly-assessed contribution of value.

Work therefore, is where we start. A colony member is compensated for the value they create
for the colony, in the form of ETH, any ERC20-compatible token, or Reputation, a non-fungible,
time-decaying measure of aggregate past contributions.

Active colonies are likely to have a variety of types of work ongoing at any given time; in order to
ease the management of work (and their budgets), colonies can be divided into Domains. Domains
are how you structure your colony. You can think of them as teams, departments, circles, or what-

4

ever makes sense in your context. These make it easy to group related tasks together and separate
them from other unrelated work in other domains, and make it possible to incorporate contextually-
appropriate decision-making logic (in which one domain may be controlled by an administrator,
while another is controlled by reputation-weighted voting).

When a colony member gets paid in the colony’s internal token, they also receive Reputation
for the Skills they used, and in the Domain in which the value was created. Reputation is used
to quantify the historical contributions of members to a colony, and to make sure they are fairly
rewarded. By earning Reputation in a Skill (e.g. Javascript) and a Domain (e.g. BigCo Client
Project), the recipient earns proportional influence in decisions pertaining to those skills and do-
mains. Reputation is not transferable between accounts, and slowly decays over time. This decay
ensures that any reputation a member has is as a result of recent behaviour deemed beneficial to
the colony (and thus a function of the judgment of the current membership). As the calculations
involved are too complex to carry out on the Ethereum blockchain, updates to a member’s repu-
tation are calculated off-chain, with an on-chain reporting mechanism secured by economics and
game theory (See Section 5).

Many decisions within a colony can be made by informal consensus. Members are expected to
verify their colleagues conduct, but hopefully will only rarely need to intervene. Intervention in this
context means ‘making a motion’ and is the subject of Section 3.4. Decision via vote is infrequent
within Colony because it is slow and carries a high coordination cost; costs which are justified in
the (hopefully rare) case of dispute resolution. The dispute resolution system allows for many kinds
of decisions to be put to a contextually-relevant vote of some or all members of the colony. Ballots
are weighted meritocratically, according to voters’ contextually-relevant reputation.

Colonies may be voluntary, non-profit, or for profit. A revenue-generating colony may elect to
pay out a portion of its revenue to its members. When the colony pays out rewards, the amount
a member receives is a function of their combined token and reputation holdings; this ensures
those who have contributed the most gain the greatest benefit. Members maximise rewards by
contributing to a colony over its whole lifetime (thus maintaining high levels of reputation) rather
than sitting on early accumulations of tokens. The details of the rewards payout process can be
found in Section 2.4.

We want people to use Colony for as many different workflows as possible, even those that are
not immediately apparent as being able to leverage the Colony protocol. Section 3.5 provides a
brief outline of some more complex behaviours that we have envisaged as possible with the tools
described here.

5

2 Structure of a Colony
Colonies exist to enable collaboration between their members, and direct collective efforts towards
common goals. Facilitating effective division of labour, management of incentives, and allocation
of resources are therefore some of the most important functions of the Colony protocol.

2.1 Domains and permissions
The essential structure of the colony revolves around domains and the permissions that accounts
may have in them. These two concepts jointly define the structure and security of a colony and
provide a flexible framework for creating colonies of many kinds.

2.1.1 Domains

Like any organization, without structure, a large colony would quickly become difficult to navigate
due to the sheer number of participants and interactions taking place — domains solve this problem.
A domain is like a folder in a shared filesystem, except instead of containing files and folders, it can
contain subdomains, funding, and expenditures. This simple modularity enables great flexibility as
to how an organisation may be structured. Domains could be used to represent teams, departments,
projects, tribes, circles, and so forth. A toy example is shown in in Figure 1.

Root

Design Development Product

Frontend Backend

Figure 1: Parts of a domain hierarchy for a colony developing a web service.

It is ultimately up to individual colonies to decide how they wish to use domains—some might
only use them for coarse categorisations, whereas others may use them to precisely group only the
most similar expenditures together, or even multiple expenditures that other colonies would consider
a single expenditure. Some might use domains to represent long-lived organizational departments,
while others might use them more ephemerally, to represent projects with start and end dates.
We aim to provide a general framework that colonies may use however they see fit, and to be
prescriptive only where necessary.

Among other things, this compartmentalisation of activity provides an essential benefit to the
colony as a whole by making reputation contextual. When arbitration occurs, it occurs at a specific
level in the colony’s domain hierarchy. This means that people with relevant contextual knowledge
can be included for their opinion, and that when arbitration occurs, the whole colony is not required
to participate in the process.

6

2.1.2 Permissions

Access control in a colony is organized around the concepts of permissions. There are six different
permissions (roughly in order of influence): recovery, root, arbitration, architecture, funding, and
administration, each unlocking a bundle of semantically-related functionality.

With the exception of the recovery and root permissions, all permissions are domain-specific
(much like permissions in a Unix file system are directory-specific), with the rule that permissions
held in a parent domain are inherited in all child domains. Put another way, have a permission in
a domain gives you that permission in the entire subtree rooted in that domain. To implement this
inheritance, permissioned functions require a domain proof of the following arguments:

• permissionDomainId - The (parent) domain in which the account holds the permission.

• childSkillIndex - The index of domainId in permissionDomainId’s children array.

• domainId - The (child) domain in which the action is being taken.

These arguments can be evaluated on-chain in constant time to determine whether the account
is authorized to call the privileged function.

Permissions are held by Ethereum accounts. This means that permissions may be given to
human administrators, or assigned to contracts which implement more complex behavior (such as
voting mechanisms). These types of contracts are known as extensions and are discussed in-depth
in Section 3. The use of extensions to flexibly ‘plug-in’ various decision-making mechanisms is a
key concept in the Colony protocol.

It is worth noting that the list of accounts that have the permission in question have the full
permission; no additional restrictions exist at the protocol level. In some cases, these are extremely
powerful capabilities (such as emitting arbitrary reputation penalties) and require absolute confi-
dence in whomever or whatever controls it. We anticipate therefore that in many cases, extension
contracts will be used to offer varying degree of moderation to the underlying permissions.

Recovery

The recovery permission gives accounts access to the colony’s emergency ‘recovery’ functionality,
which allows for arbitrary state-changes to the colony’s data. Recovery mode is described in more
detail in Section 2.7.

Root

The root permission gives accounts access to high-level administrative functions in the colony, such
as setting colony-wide parameters, upgrading the colony, and minting new internal tokens. This
permission also gives accounts the ability to assign permissions throughout the colony (including
in the root domain).

Arbitration

The arbitration permission gives accounts the ability to make domain-specific state changes, meant
as a means of resolving motions. This permission also enables accounts to emit reputation penalties
(but not reputation increases).

7

Architecture

The architecture permission gives accounts the ability to create new domains in a colony, as well as
assign permissions in those new domains. Unlike root, accounts with this permission cannot edit
permissions in the domain in which they hold the permission, only in subdomains.

Funding

The funding permission gives accounts the ability to move tokens between funding pots. In practice,
this means that this permission is responsible for allocating money amongst domains and for funding
expenditures. Financial management in a colony is described in more detail in Section 2.2.

Administration

The administration permission gives accounts the ability to create and manage (but not fund) ex-
penditures, the basic incentive unit in a colony, described in Section 2.2.

Broadly, permissions are designed as a ‘separation of powers’: different permissions must work
in concert to carry out the functioning of a colony. For example, administration can create an
expenditure, but only funding can actually provide the resources, while arbitration resolves motions
as they arise. Complex extensions may require multiple permissions in order to function properly
(such as ‘tasks’, which requires both arbitration and administration).

The intention is that, since permissions are grouped into semantic bundles of functionality, it will
be possible to develop specialized mechanisms for mediating access to the underlying functionality
(i.e. specialized funding mechanisms and specialized dispute-resolution mechanisms, as opposed to
a general-purpose ‘voting’ mechanism meant to handle all possible decisions).

Colony’s long-term vision is of trustless organizations; organizations in which members can
safely collaborate and manage shared resources, without needing to know or trust each other. Early
colonies may find that a larger emphasis on human moderators to be useful, while more mature
colonies may find reasons to devolve increasingly more decision-making to extensions implementing
trustless functionality. We will refer to colonies which make substantial use of these extensions as
trustless colonies.

2.2 Funding and expenditures
All tokens and currencies are administered by the colony contract; it is responsible for all the
bookkeeping and allocations. The former are managed via funding pots, the latter via expenditures.

2.2.1 Funding pots

Each domain and each expenditure in a colony has an associated funding pot. A funding pot can
be thought of as a wallet specific to a particular domain or expenditure, and are used to move
funds around within a colony. To each funding pot, the colony contract may associate any number
of Ether or ERC20-compatible tokens it holds. Depending on context, the funds in a funding pot
may be referred to as the payout, bounty, budget, salary or working capital. In addition to the
funding pots, there is a special rewards pot which accumulates tokens to be distributed to members
as rewards (see Section 2.4).

8

Only accounts holding the funding permission may move tokens; the rule is that they may move
tokens between any two pots in the subtree rooted in the domain in which they hold the permission.
It is the expectation that this permission will in many cases be given to an extension contract
implementing a specialized decision-making mechanism, such as the funding queue described in
Section 3.2.

2.2.2 Expenditures

The basic payment primitive of a colony is the ‘expenditure’. Expenditures are used to transfer
funds out of a colony to any Ethereum account. An expenditure has several properties:

• An owner (the account address which created the expenditure).

• A status (active, cancelled, or finalized).

• One or more recipients.

• payouts for each recipient, denominated in one or more tokens.

• Optionally, a per-recipient skill.

• Optionally, a per-recipient payoutModifier.

• Optionally, a per-recipient claimDelay.

The owner is responsible for setting the properties of the expenditure. The recipients are simply
Ethereum accounts. While it is anticipated that recipients will be individuals, there is nothing to
prevent these accounts being contracts under the control of multiple people.1

Once the expenditure is finalized, all properties become locked (but subject to arbitration) and
payouts can be claimed (and reputation awarded). Prior to finalization, the owner has the ability
to cancel the expenditure entirely. Any funds that have already been assigned to the expenditure
can be reassigned to the domain that the expenditure was created in.

Defining the payouts for each recipient, of course, does not provide the funds — this must be
done through the funding mechanisms in Colony. Payouts do not have to all be in the same token,
and an expenditure’s payouts can be made up of an arbitrary number of tokens.

The expenditure is meant to be an abstract primitive which can support many types of work-
flows, and so contains optional attributes to support more complex behavior (see Section 3). For
instance, the payoutModifier and claimDelay can be used to implement a rating and review sys-
tem, where good or bad reviews lead to an across-the-board reputation increase (or payout decrease)
for a recipient, while the claimDelay is set to allow for any relevant motions to be decided before
funds can exit the colony.

Once the tokens have been received by an account, they are under the control of the recipient
— there is no way to reclaim the funds. The funds have to cross the ‘Cryptographic Rubicon’
somewhere in the system (by the nature of the blockchain), and it makes sense to do so here.2

1With the protocol as described in this document, any reputation earned would be assigned to the contract in
question and not able to be moved to the appropriate users. In these cases, it might be better to develop an extension
contract which would determine the per-user allocation in advance and configure the expenditure accordingly.

2Currently, the only way this rule can be broken is by the Colony conspiring to abuse the ‘arbitrary transaction’
feature described in Section 2.8.

9

2.3 Internal tokens
Every colony has its own ERC20-compatible ‘internal token’. These are the tokens that, when
earned as an expenditure payout, also generate reputation for the receiver (and thus distribute
control within the colony). What these tokens represent apart from this is up to the colony to
decide. For example, they may have financial value, or they may be purely symbolic; some possible
scenarios are outlined in this section.

In addition, colonies may ‘bring their own token’ and designate an existing ERC20-compatible
token as reputation-bearing. While this may be advantageous in some contexts, it’s worth noting
that this weakens the incentive alignment underpinning the game theoretic security of trustless
colonies, in that the value of the token is divorced from the performance of the colony. Note that
the internal token cannot be changed once a colony has been created, so choose wisely.

In cases where a colony creates a new token, that colony is in control of the supply of the token.
Specifically, root permission holders can mint tokens at-will. In some cases, this may look like
a founder managing the token supply unilaterally, while in other cases colonies may manage the
minting process via an extension contract (see Section 3.5.1 for an example).

A common question is why only internal tokens (as opposed to all tokens) are reputation-bearing.
The reason for having a single token be reputation-bearing is that it avoids tricky exchange-rate
problems, such as incentives to receive more of a less valuable token to earn more reputation.

2.3.1 Token use-cases

Ultimately, internal tokens are used to distribute reputation, and thus both ownership and decision-
making power. Since users with more reputation can both exercise more influence over the activity
of the colony, as well as claim a greater share of the rewards, reputation functions to align incentives
among the members of colony. Here we give a few examples of different use-cases for internal tokens,
demonstrating the variety of schemes colonies may adopt for distributing ownership and influence
alongside cash compensation.

Tokens as early rewards

One of the chief benefits of a colony having its own token is that it can offer rewards for work
before it has any revenue or external funding to draw on. A new colony may offer token payouts
for expenditures with the hope that the reputation earned by these token payments (and the future
revenue earned by the colony) will eventually lead to financial rewards. By allowing ‘spending’
before fund-raising, the financial burden during the start-up phase of a new colony is eased. Once
a colony is profitable, payment in tokens may be the exception rather than the norm.

Tokens representing hours worked

We could imagine a colony in which all expenditures are paid in Ether, but include a number of
the colony’s own tokens as well, equal to the expected number of hours worked. The members of
the colony would be responsible for assigning ‘correct’ token and Ether payouts to expenditures.
This extra responsibility would also ensure users doing the same amount of work received the same
reputation gain, rather than the reputation gain being dependent on the rates they charged.

10

Tokens as performance-based bonuses

Alternatively, we could imagine a colony which seeks to balance predictable compensation (i.e.
salaries) with performance-based incentives. Such a colony could pay out salaries in a token such
as Ether or DAI, and reserve their internal token for performance-based bonuses (i.e. for hitting
quarterly OKRs). Such an approach makes reputation (and decision-making power) a function of
achievement, without making members of the colony feel as though their ability to pay rent depends
on their ability to hit quarterly goals.

2.3.2 Colony’s Token contract

Colony has developed a customized Token contract, with some additional functionality:

• mint — lets the token contract owner introduce new tokens into circulation.

• burn — lets anyone permanently remove tokens from circulation.

In addition, Colony’s Token contract introduces the idea of ‘locking’ — tokens being non-
transferrable until a one-way boolean flag is flipped. This is useful for colonies which want more
control over how and when their tokens can be liquidated and exchanged.

This contract underlies the Colony Network Token (see Section 4.2) and is the default token
contract for new colonies, although colonies are free to choose any ERC20-compatible token.

2.4 Revenue and rewards
A colony may sell goods and services in exchange for Ether or any ERC20-compatible tokens, and
this revenue may be sent to the colony’s address. Whenever a colony receives such payments, we say
that the colony has earned revenue. Revenue is distinct from a colony’s working capital: the latter
is the sum of all tokens held by the colony in various domains (see Section 2.2), while the former is
implicitly defined as the colony’s token holdings not yet accounted for in any of the existing pots.

There is an expectation that some fraction of any Ether or other tokens received by the colony
are paid out to their members. ‘Members’, in this context, means accounts holding both tokens
and reputation in the colony. Whenever a colony distributes a portion of revenue to its members,
we say that the colony is paying out rewards.

2.4.1 Processing revenue

Revenue accumulates as the colony receives transfers of tokens. In order to be processed, any user
can make a special claimColonyFunds transaction, indicating for which token they wish to process
accumulated revenue.

The transaction then calculates the amount of token-denominated revenue that has accumu-
lated since the last such transaction, and transfers some proportion to the colony’s rewards pot.
The remainder is then made available to the colony as working capital. The percentage split is
configurable by the root permission via the setRewardInverse function.

11

2.4.2 Claiming rewards from the rewards pot

Rewards accumulate in the rewards pot. To trigger a payout to users (i.e. to make rewards
claimable) a root user makes a special startNextRewardPayout transaction (no more than once
every 60 days), initiating a process by which all members may claim a payout based on the reward
pot’s holdings.

This reward payout transaction includes the specific currency that should be paid (reward
payouts for each token are handled separately). Once the process begins, all users’ tokens are
locked until they claim their payout. Locking is necessary because the token balance of each
account factors into the rewards formula of equation (1). Locking is done by incrementing the
token’s totalLockCount.

Our TokenLocking contract contains a locking mechanism ensuring that a user cannot move
tokens while they have (token-weighted) votes to reveal; we use the same mechanism here to ensure
that a user cannot move tokens after a payout is approved by the members of the colony but before
the user has claimed their rewards. The colony has a counter for each user that is incremented
whenever they claim a payout; they can also waive their claim to a payout that will increment this
counter.

Rewards are only available to accounts that hold both tokens and reputation, and
the amount claimable by each account depends on both token balance and reputation (see equation
(1) below). Therefore we need to have a similar behaviour to ‘lock’ the reputation of the users
for the payout. When a payout is activated, the current state of the reputation tree is recorded in
the payout itself. Users are paid out according to their reputation in this state, rather than the
most recent state, to ensure all users get an appropriate payout and to avoid exploiting the system
(which might otherwise be possible via e.g. delaying reward collection until after completing an
expenditure, increasing their reputation).

2.4.3 The rewards formula

The amount that each user (ui) of a colony (C) is entitled to claim (pi) is a function of their colony
token holdings (ti) and their total reputation in the colony (ri):

pi =

(
tiri

T ×R

) 1
2

where T =
∑
uj∈C

tj and R =
∑
uj∈C

rj . (1)

This is a (normalised) geometric average of the user’s token holdings and reputation. We note
that this is very unlikely to payout all the tokens set aside for a payout — the only way it would do
so is if everyone had the same proportion of reputation in the colony as they did proportion of tokens
in the colony. However, the geometric average is the natural way to fairly capture the influence of
two variables with different ranges, and ensures that large token holders must earn large amounts
of reputation to get the most from the payouts. The total reputation and user reputation in the
colony are all provable on-chain at claim time via a Merkle proof that the ReputationRootHash
(Section 5) contains some values claimed by the user; the user’s balance of colony tokens and the
total number of tokens issued is trivial to lookup.

After some sufficiently long period of time (60 days), all unclaimed tokens can be reclaimed
on behalf of the colony by a user, and the payout closed. Any users that have not claimed their
payout by that point will still have their tokens locked, and they will remain locked until they issue

12

a transaction waiving their claim to the payout (indeed, they already passively did this by not
claiming it in a timely fashion). Unclaimed tokens are returned to the rewards pot and become
part of the next reward cycle.

2.5 The reputation system
Reputation is a number associated with each user which attempts to capture the value of that user’s
contributions to the colony over time. Reputation is used to weight a user’s influence in decisions
related to the expertise they have demonstrated, and to determine amounts owed to a colony’s
members when rewards are disbursed. Because reputation is awarded to users by either direct or
indirect peer assessment of their actions, we argue that influence and rewards can be seen as being
(roughly) distributed by merit. Colony’s aim is that the reputation system will enable an emergent
and dynamic decision-making hierarchy in which all of the right people are in the right places.

Colony aims to be broadly meritocratic. Consequently, the majority of decisions in a trustless
colony are weighted by the relevant reputation. Unlike tokens, reputation cannot be transferred
between accounts, as it represents an appraisal of the account’s activities by their peers. Reputa-
tion must therefore be earned by direct action within the colony. Reputation that is earned will
eventually be lost through inactivity, error, or misbehaviour; a description of how reputation is
gained and lost is given in Section 2.5.2.

2.5.1 Types of reputation

Reputation by domain

The hierarchical domain structure of a colony was described in Section 2.1. Reputation is earned
in this hierarchy, and a user has a reputation in all domains that exist — even if that reputation
is zero. When a user earns or loses reputation in a domain, the reputation in all parent domains
changes by the same amount. In the case of a user losing reputation, they also lose reputation in
all child domains, but in this case the child domains lose the same fraction of reputation that was
lost in the original domain. If a reputation update would result in a user’s reputation being less
than zero, their reputation is set to zero instead.

Root: 50 + (10+45+30)

Design: 10

10

Development: 20 + (15+10)

45
Product: 30

30

Frontend: 15

15

Backend: 10

10

Figure 2: Reputation flowing up a domain hierarchy.

13

An example makes this clearer. Suppose a colony has a ‘development’ domain which contains a
‘backend’ domain and a ‘frontend’ domain, as in Figure 2. Any time a member of the colony earns
reputation for work completed in the backend domain, it will increase their backend reputation, their
development reputation and their reputation in the all-encompassing root domain of the colony.
Reputation earned in the development domain will only increase the development and root domain
reputation scores of the user.

Later, the user behaves badly in the ‘development’ domain, and they lose 100 reputation out of
the 2000 they have in that domain. They also lose 100 reputation in the parent domains, and 5%(

100
2000

)
of their reputation in each of the child domains of the ‘development’ domain (which in this

example, includes both frontend and backend domains).

Reputation by skill

We anticipate domains to mostly be used as an organisational hierarchy within a colony. However,
this would not necessarily capture the type of work that a user completed to earn their reputation.
If the domain were a project, with expenditures involving both design and development work,
reputation earned by completing expenditures related to these skills would not be distinguishable.
To have a more granular account of the work a user completes to earn their reputation, a skill cloud
is also maintained.

This global cloud of skill tags is available to all colonies, and is curated and maintained by the
Metacolony. When an expenditure is created, as well as being placed in a particular domain in
the colony, may also be tagged with one or more skills from the skills cloud. When the recipient
earns reputation by claiming the payout, they will earn reputation in all skills the expenditure was
tagged with, with the reputation divided uniformly amongst the skills. This is in addition to the
reputation earned in the relevant domains.

Even though the skills cloud is universal, specific skills reputation is unique to each colony.
Earning reputation in a skill in one colony has no effect on the user’s reputation in that skill in any
other colonies.

Reputation by colony

A user’s total reputation in a colony is their reputation in the root domain. This is the reputation
they will be voting with in any decisions that require input from everyone in a trustless colony (i.e.
modifying colony-wide parameters). Reputation in a colony has no effect outside the colony. In
particular, reputations held in one colony have no bearing on reputations held by the same account
in another colony.

2.5.2 Earning and losing reputation

There are three ways to receive reputation in a colony.3 The first (and by far the most common)
is through receiving a payout via an expenditure. The second is through the arbitration process.
The third is upon the creation of a colony and the associated bootstrapping process.

Reputation losses broadly occur as the result of arbitration, and extension contracts (see Section
3) makes it possible to implement mechanisms which involve reputation penalties (such as tasks
and disputes). In addition, all reputation earned by users is subject to a continual decay over time.

3The Metacolony is a special case where reputation may also be earned by reputation mining (see Section 5).

14

The rest of this section outlines each of these mechanisms, with references to the more detailed
descriptions given elsewhere where appropriate.

Reputation change via expenditures

Whenever an expenditure recipient receives a payout denominated in the colony’s internal token,
the recipient also receives some amount of reputation, scaled by that recipient’s payoutScalar. A
value of 1 gives reputation equivalent to the token payout, but a multiple of up to 2x is possible.
The reputation is earned in the domain (and all parent domains) of the expenditure, and divided
equally among any skills associated with that recipient.

Reputation change as a result of arbitration

Arbitration permission holders have the ability to emit arbitrary reputation penalties (but not
increases) in both domains and skills. While this might seem to be a significant power available
to arbitration permission holders, recall that this permission will in many cases be assigned to
extension contracts, which will mediate this ability via various mechanisms, such as the motions
system (see Section 3.4).

Bootstrapping reputation

Since a trustless colony’s decision making procedure rests on reputation weighted voting, we are
presented with a bootstrapping problem for new colonies. When a trustless colony is new, no-one
has yet completed any work in it and so nobody will have earned any reputation. Consequently,
no motions can be made and no disputes can be resolved as no-one is able to vote. Then, once the
first expenditure is paid out, that user has a dictatorship over decisions in the same domains or
skills until another user earns similar types of reputation.

To prevent this, when a colony is created, the creator can choose accounts to have initial
reputation assigned to them in the root domain to allow the colony to bootstrap itself. The
reputation assigned to each user will be equal to the number of tokens received, i.e. if a member
receives ten tokens, they also receive ten reputation in the root domain. Given that reputation
decays over time, this initial bootstrapping will not have an impact on the long-term operation of
the colony. This is the only time that reputation can be created without an associated expenditure
being paid out. Users receiving reputation are presumably the colony founder and their colleagues,
and this starting reputation should be seen as a representation of the existing trust which exists
within the team.

We note that the same is not required when a new domain is created in a colony. We do not
wish to allow the creation of new reputation here, as this would devalue reputation already earned
elsewhere in the colony. This bootstrapping issue is resolved by instead using reputation within the
parent domain, when a child domain contains less than 10% of the reputation of its parent domain.
A domain below this threshold cannot have domains created under it.

Reputation decay

All reputation decays over time. Every 90 days,4 a user’s reputation in every domain or skill decays
by a factor of 2. This decay occurs every 1 hour, rather than being a step change every 90 days

4It is likely that this parameter will be configurable on a per-colony basis in the future.

15

to ensure there are minimal incentives to earn reputation at any particular time. This frequent,
network-wide update is the primary reason for the existence of the reputation mining protocol,
which allows this near-continuous decay to be calculated off-chain without gas limits, and then
realised on-chain.

The decay serves multiple purposes. It ensures that reputation scores represent recent contribu-
tions to a colony incentivising members to continually contribute to the colony. It further ensures
that wild appreciations in token value (and the corresponding decrease in tokens paid per expen-
diture) do not permanently distort the distribution of reputation but instead serves to smooth out
the effects of such fluctuations over time.

One might wonder why we have chosen to decay reputation, rather than pursue a strategy of
reputation dilution via inflation. In one sense, they are equivalent: decaying reputation that is
earned at a constant rate is the same as earning reputation at increasingly inflated valuations.
Mathematically, however, decay is the cleaner approach, and so the use-case for inflation is that
it is more feasibly calculated on-chain. In the case of Colony, reputation cannot be calculated
on chain, since reputation updates effect an unbounded number of reputation nodes (due to the
unbounded size of the domain tree). Since reputation cannot be calculated on chain, we choose to
decay reputation in our off-chain reputation mining process.

2.5.3 On-chain representation of skills and domains

In the context of reputation, domains and skills are the same, differing only in that domains
are colony-specific categorisation and skills are universal categorisation. In this subsection, each
instance of ‘skill’ should be taken to mean ‘skill or domain’.

Each skill that reputation can be earned in is assigned a skillId that is unique across the whole
network. When a skill is created, additional properties are recorded and initialised.

skillId →



nParents total number of parent skills.
nChildren total number of child skills.
parents [· · ·] array of skillIds of a logarithmic subset of parent skills,

where parents[i] gives the 2i-th parent.
children [· · ·] array of skillIds of all child skills.
globalSkill whether the skill is a skill or domain.
deprecated whether the skill has been deprecated.

Upon creation, nChildren is 0 and children[] is empty. These two attributes in all parents
are updated with the skillId of the new child skill on creation.5

Storing these pieces of data on-chain is required, as they are used by the reputation mining
protocol (see Section 5) and the procedures for appealing motions (see Section 3.4). They are
stored under the control of the ColonyNetwork contract.

5We acknowledge that this is fundamentally gas limited, but the only consequence of this will be the inability
to create new skills once the maximum depth allowed by the block size is reached. Our calculations suggest this
corresponds to a depth of around 80, which we believe is likely to be sufficient for the majority of use cases.

16

2.5.4 Reputation update log

Whenever an event that causes one or more users to have their reputation updated in a colony
occurs, a corresponding entry is recorded in a log in the ColonyNetwork contract. Each entry in
the log contains:

• The user experiencing the reputation loss or gain.

• The amount of reputation to be lost or gained.

• The skillId of the reputation to be lost or gained.

• The colony the update has occurred in.

• How many reputation entries will need to be updated (including parent, child and colony-wide
total reputations). This is the motivation for storing nParents and nChildren for each skill
and domain.

• How many total updates to reputations have occurred before this one in this cycle, including
decays and updates to parents and children.

If the reputation update is the result of a dispute being resolved (as outlined in Section 2.5.2),
then instead of these first three properties, there is a reference to the dispute-specific record of
stakes in the relevant colony. For the structure of this log, and an explanation of the way that it
allows individual updates to be extracted in constant gas, see Appendix A.1.

This log exists to define an ordering of all reputation updates in a reputation update cycle that
is accessible on-chain. In the event of a dispute during the reputation mining protocol (described
in Section 5), the ColonyNetwork contract can use this record to establish whether an update has
been included correctly.

2.6 Managing stakes
Staking is a key concept in trustless systems, as a way to ensure that participants have ‘skin in the
game’ and can be incentivized towards good behavior. As Colony wishes to enable an ecosystem of
extensions implementing various cryptoeconomic mechanisms (see Section 3), a shared system for
managing stakes improves usability and security by saving users from needing to send and retrieve
tokens to and from many different contracts. In colonies, all stakes are denominated in that colony’s
internal token.

2.6.1 Storing Tokens

All stakes are stored in the network-wide TokenLocking contract. A singleton contract has the
advantage that in scenarios where a user is a member of multiple colonies sharing the same internal
token, a single deposit suffices for all colonies.

Any slashing of stakes occurs as a result of a function call coming from the colony and is a result
of colony-specific arbitration logic.

17

2.6.2 Approvals and Obligations

Stakes are managed via a sequence of approvals and obligations. Users approve an account to then
obligate them up to the maximum amount of their approval. If an obligation is made in excess of
the deposits held in the TokenLocking contract, the transaction will fail. Once an obligation is
made, a user cannot withdraw tokens if the withdrawal would result in a balance less than their
obligations. At any time, the approved extension can deobligate the user, freeing the tokens for
withdrawal (see Figure 3). In practice, we expect that the same underlying deposit will be obligated
and deobligated repeatedly without the user needing to move any additional tokens.

Approve Obligate Deobligate

0

5

10

T
ok

en
s

Approval Obligation Deposit

⇒ ⇒

↑

↓

↑

↓

Figure 3: Example stake lifecycle with deobligation

While an obligation is active, any arbitration permission holder can slash the stake up to the
amount of the obligation (see Figure 4). We reiterate that this is a powerful ability and in most
cases should be mediated by an appropriate extension (such as motions, described in Section 3.4).

For reasons of security, approvals are keyed by domain, as well as by address of approvee (i.e.
approve(approvee, domain, amount)). Otherwise, a malicious actor could use any arbitration
permission holder in the colony to slash a stake, rather than arbitration permission holders in
the intended domain inheritance path. However, because TokenLocking does not know about the
domain structure of specific colonies, the obligations in TokenLocking are aggregates of all colony-
and domain-specific obligations.

Overall, this design allows arbitration to be generalized and separated from the implementation
of any particular extension: extensions obligate a stake (and define the period of obligation), while
during that period separate arbitration processes can slash that stake.

18

Approve Obligate Slash

0

5

10

T
ok

en
s

Approval Obligation Deposit

⇒ ⇒

↑

↓

↑

↓

↓

Figure 4: Example stake lifecycle with slashing

2.7 Upgradability and security
2.7.1 Upgradability

We foresee the Colony Network being continuously developed. Providing an upgrade path is im-
portant to allow people to use Colony without preventing themselves from using new features as
they are added to the network.

We intend to allow colonies and tokens to be upgraded by using the pattern made available under
the name EtherRouter [3]. This implementation uses two contracts in addition to the contract(s)
providing the functionality implemented. The first additional contract is the EtherRouter contract,
which passes on transactions — via delegatecall — to the contract that implements that function.
The second additional contract is the Resolver contract, where the accounts of the contracts
that implement the desired behaviour are defined. Whenever a transaction is received by the
EtherRouter contract, it looks up the contract that implements that function (if any) in the
Resolver, and then delegatecalls that contract.

In order to upgrade, new contracts are deployed with new functionality, and then contracts that
the Resolver contract points to must be changed to point to these new contracts. In order to
avoid a situation where the contract partially implements both old and new functionality, a new
instance of Resolver will be deployed for each upgrade, and then a single transaction can point
EtherRouter at the new Resolver. From the perspective of the colony, an upgrade is then simply
swapping out one address (the Resolver) for another.

The choice of upgrading the underlying Colony contract will always fall to the colony, and never
the Colony Network. While the network is in control of what upgrades are available, they are not
able to force any colony to upgrade the underlying contracts. The colony itself must decide that it
wants to upgrade to a new version.

19

2.7.2 Security

While we aspire to bug-free contracts, bugs are inevitable, and so the adoption of a ‘defensive
programming’ mentality will limit the impact of any vulnerabilities that may be discovered in the
deployed contracts.

The ultimate fallback is known as ‘recovery mode’. In this state, whitelisted accounts (those
with the recovery permission) are able to access special functions that allow the state of the
contract to be directly edited — in practise, this will correspond to access to the functions to allow
setting of variables, as well as being able to upgrade the contract. With the agreement of multiple
whitelisted accounts, the contract will then be able to be taken out of recovery mode once the
contract has been returned to a safe state. Removal from recovery mode requires the approval of
multiple whitelisted accounts. This ensures that a single whitelisted account cannot, in a single
transaction, enter recovery mode, make a malicious edit, and then exit recovery mode before the
other parties on the whitelist have had a chance to react.

It is conceivable that colonies will be able to deactivate the recovery mode feature in the future,
once the network and contracts have matured sufficiently.

In general, the contract may enter recovery mode due to:

• A transaction from a whitelisted account signalling that the contract should enter recovery
mode.

• Something that should always be true of the colony not being true — for example, after an
expenditure payout checking that the amount of funds promised to expenditures and not yet
paid out is still less than the balance of the colony. If not, then abort the transaction and put
the contract into recovery mode.

• A qualitative trigger suggesting something may be amiss — perhaps too many tokens have
been paid out in a short amount of time.

Any approvals from whitelisted accounts to leave recovery mode must be reset whenever a
variable is edited. A whitelisted account agreeing to leave recovery mode records the timestamp at
which the agreement occurred, and any change of variables also update a timestamp indicating the
last edit. When attempting to leave recovery mode, only agreements made after the last edit are
counted towards meeting the threshold.

The first recovery permission holder is set at colony creation and is the creator of the colony.
Additional recovery permission holders can be added by the root permission.

2.8 Arbitrary transactions
Of course, it is possible that a colony will want to engage in some behaviour that we haven’t
foreseen, that could be implemented in a contract outside the control of the Colony Network (such
as changing a parameter in a contract when the colony as a whole is responsible for governing that
contract). To that end, we wish to have a mechanism by which a colony can create an arbitrary
transaction on the blockchain to interact with contracts and tokens without requiring the network
to explicitly support them. As they are powerful, such transactions should be rare occurrences
requiring root authorization.

20

3 Extending Functionality
The vision of Colony is the creation of decentralized, trustless organizations, in which decisions are
driven by reputation, not a subset of moderators. Yet, at the level of the core Colony contracts,
access is mediated by permissions, not reputation.

The decision to make ‘permissions’ Colony’s core access-control logic is doubly motivated. First,
it makes it possible to launch a Colony which is admin-controlled (appropriate for small teams with
substantial existing trust) and to transition to a more decentralized, trustless style of operating as
the organization matures. Second, the permissions-based approach makes it possible to experiment
with a wide variety of mechanisms without needing to continually deploy new Colony contracts.
Much like the distinction between kernel space and user space in the design of operating systems,
permissions can be thought of as providing the system calls needed to give end-user applications
(extensions) the ability to securely manipulate the underlying resources of the system. Just as this
model has proven very successful in enabling a wide variety of software applications to safely share
computing resources, so do we think that the colony-and-extensions model will be successful here.

This section will discuss in-depth how a variety of key trustless functionality can be implemented
and made available for colonies to use, and to demonstrate the flexibility enabled by the permissions
system.

3.1 Tasks
Unlike an expenditure, which represents an abstract transfer of resources, the ‘task’ represents a
more concrete exchange of labor for value, and a unit of work requiring no further subdivision or
delegation. A task has three roles associated with it:

• Manager — responsible for defining and coordinating the delivery of the task.

• Worker — responsible for executing the task.

• Evaluator — responsible for assessing whether the work has been completed satisfactorily.

The manager (initially the creator of the task) is responsible for selecting the evaluator and
worker and setting additional metadata for the task:

• A dueDate.

• payouts for each of the manager, worker and evaluator.

• A specificationHash: the address of a specification on IPFS, used by the worker to guide
the work, and the evaluator for assessing the satisfactory completion of the task.

In order to create a task, the manager must have the administration permission. Future
variations of the ‘tasks’ extension may instead impose minimum reputation requirements and/or
staking, making task creation trustless.

Defining what the payouts for each role should be, of course, does not provide the funds —
this must be done through the funding mechanisms in Colony (see Section 2.2). Payouts do not
have to all be in the same currency, and a task’s payout can be made up of an arbitrary number
of currencies. If a payout for the task is denominated in the colony’s token, the recipient will also
earn reputation when the task is completed as long as their work was well received.

21

If no worker has been assigned to a task, the manager has the ability to cancel the task entirely.
Any funds that have already been assigned to the task via funding proposals may be reassigned to
the domain of the task.

Assigning either the worker or the evaluator requires the mutual agreement of the manager and
the assignee. Once assigned, changes which involve either the worker or evaluator (such as changing
the task brief or due date, cancelling the task, or changing assignments or payouts) require mutual
consent (i.e. multisig approval), or can be triggered via the motions process.

After the task has been assigned, the worker has until the due date to make a ‘final submission’,
which includes some evidence that the work has been completed.

Once the due date has passed or the worker has made their submission, the evaluator may rate
the work. Regardless of whether the rating is positive or not, the task enters a state in which
motions to the change final state of the task can be raised and disputes can be initiated (see
Section 3.4). Once the motions period has elapsed, payouts are eligible to be claimed.

As mentioned, the performance of the user who has completed the work is determined after the
work is submitted. At this point, the evaluator grades6 the work submitted by the worker, and
the worker rates the manager’s ability to coordinate delivery of the task, on a scale of one to three
points. In the case of the evaluator, a rating of one point counts as them rejecting the work and
a rating of two or three points counts as accepting the work. The rating received determines the
reputation change the user will experience:

1 point: User was unable to complete the task. Reputation penalty equal to 1x payout.

2 points: User completed the task acceptably. Reputation gain equal to 1x payout.

3 points: User completed the task superbly. Reputation gain equal to 1.5x payout.

The worker receives reputation both in the domain (and parent domains) and the skill(s) of the
task, while the manager receives only in the domains, not in the skill(s) as they have not actually
done the task. While it is likely some knowledge is required to coordinate delivery of the task, this
is not always the case; we believe that skill reputation should exclusively demonstrate ability to
perform tasks.

Upon completion of a task, the evaluator also earns domain reputation (with an implicit rating
of "2"). There is no explicit rating of the evaluator, but as with all other payouts a motion can be
made before a payout is claimable; the outcome of the motion may be a reduction of payout or an
explicit reputation penalty.

Tasks are built on expenditures, and implementing tasks as an extension contract makes use of
the arbitration and administration permissions – the latter to manipulate the expenditure and
the former to implement consequences of the rate-and-reveal flow.

When the task is finalized, the underlying expenditure’s claimDelays are set to allow for motions
to be made. Based on the rating recipients receive, their payoutModifiers are set to give a
reputation boost (for an excellent review) or reduce the payout they can claim (for an unsatisfactory
review). Also in the case of an unsatisfactory review, a reputation penalty is emitted.

6These scores should be submitted using a pre-commit and reveal scheme to ensure secrecy during the rating
process and avoid retaliatory grading in the event that the manager and evaluator are the same person, which we
expect to be a reasonably common occurrence. In the event of a user not committing or revealing within a reasonable
time, the rating of their counterpart is assumed to be satisfactory, and they receive a mild reputation penalty.

22

3.2 Funding queues
Section 2.1 describes the funding permission, which is used to transfer funds in between funding
pots. This permission is powerful — for daily operations, it is better to mediate the allocation
of funds via a more specialized mechanism. One such mechanism is the funding queue, which
leverages time as a driving factor to enable collaborative, asynchronous, and trustless decision-
making, without voting.

The essential idea behind the funding queue is that tokens are continuously allocated over time,
rather than all at once in a pass/fail fashion, with user inputs controlling the speed and direction of
the allocation. As an analogy, one can think of water running down a mountain, where the shape of
the mountain determines the direction and speed of the flow. With funding queues, users determine
this shape. Whereas with voting-based systems, unpopular proposals fail entirely, with a funding
queue, unpopular proposals simply take a very long time to be fulfilled, while popular proposals
are fulfilled quickly.

Any member of the colony may create a funding proposal. The proposer must have 0.1% of
the reputation of the domain that is the most recent common ancestor of the source and target
pots, and stake an equivalent amount of the colony’s tokens. This stake is used to help discourage
spamming of funding proposals and provide a mechanism whereby the creator can be punished for
bad behaviour.

A funding queue contains of a series of funding proposals, each with the following attributes:

• Creator – The person that created the proposal.

• From – Funding pot funds are coming from.

• To – Funding pot funds are going to.

• TokenType – The token address (0x0 for Ether).

• CurrentState – The state of the proposal (i.e. inactive, active, completed, cancelled).

• TotalPaid – Amount transferred thus far.

• TotalRequested – The total amount requested.

• LastUpdated – The time when the proposal was last updated.

• Rate – Rate of funding, a function of the backing reputation.

We distinguish between two types of funding proposals: Basic Funding Proposals (BFP)
intended for normal use, and Priority Funding Proposals (PFP) intended to be used when a
basic proposal is inadequate, or for unusual circumstances. The basic funding proposal may start
funding the target straight away, whereas a priority funding proposal must be explicitly voted on
before it starts directing funds. Furthermore, for a basic funding proposal the target pot must be
a direct descendant of the source in the hierarchy whereas a priority funding proposal has no such
restrictions. Priority funding proposals should be used when funds need to be directed somewhere
that is not a direct descendant of the source, when the funding rate needs to be very high (including
immediate payment), or when multiple funding proposals must occur in parallel (e.g. in the case
of paying of salaries).

23

3.2.1 Attributes in detail

From, To and TokenType

The purpose of a funding proposal is to move tokens of TokenType from pot From to pot To. The
TokenType may be Ether or any ERC20-compatible token. The From field must be a funding pot
associated with a domain or an expenditure in the colony, while the To field may be any funding
pot (including the special rewards pot, see Section 2.4). If the funds are to move ‘downstream’ from
a domain to one of its children, a basic funding proposal is often sufficient.

CurrentState

The state of a funding proposal is either inactive, active, completed or cancelled. Only an
active funding proposal is in line to channel funds. A basic funding proposal begins in active state
while a priority one begins inactive (i.e. it must be activated by a vote). A funding proposal is
active until it is either completed (when its TotalPaid reaches TotalRequested) or cancelled.

The creator of a funding proposal may cancel it (setting CurrentState to cancelled) at any
time. This is analogous to the creator of a task being able to cancel the task if it has not yet been
assigned a worker (see Section 3.1). Note that if an expenditure is cancelled, funding proposals that
have that expenditure’s funding pot as their target (To) are automatically cancelled when they are
next pinged, and no funds are reallocated. However, the funds that had already been transferred
are not automatically returned; it may require a PFP to return the funds ‘upstream’.7

TotalPaid and TotalRequested

The total number of funds that a funding proposal wishes to reallocate is called its TotalRequested
amount. Due to the mechanism by which funding proposals accrue funds over time, it is common
that a funding proposal will have received a part but not all of its TotalRequested amount. The
total number of tokens accrued to date are stored in its TotalPaid amount.

The creator of a funding proposal may edit the TotalRequested property of a funding proposal
at any time, but doing so resets the reputational support that the proposal has in the funding queue
to zero. The intention here is for changes to funding to be potentially quick to achieve with the
agreement of others in the colony if the requirements for the recipient pot change (e.g. the scope
of a domain increases).

Rate and LastUpdated

When a funding proposal is eligible to accrue funds, it does so at a specific Rate, denominated in
‘tokens per second’. Since nothing happens on the blockchain without user interaction, the funding
system uses a form of lazy evaluation. To claim funds that the proposal is due, a user may ‘ping’ the
proposal — i.e. the user manually requests a pro-rated distribution of funds.8 When pinged, the
time since LastUpdated is multiplied by the Rate to determine how many tokens the proposal would
have accrued in the interim if funding flow were continuous. This amount is added to TotalPaid,
the funds are transferred, and the current time is recorded as LastUpdated.

7It is conceivable that such return-funds-from-cancelled-tasks PFPs have lower hurdles of activation.
8This does not preclude a front-end interface displaying the ‘current’ level of funding, updated in real-time.

24

TotalPaid is only ever increased up to TotalRequested and when this happens as a result of
a pinging transaction, the LastUpdated value is set to the earliest time at which this could have
occurred.

3.2.2 Basic funding proposals

A basic funding proposal (BFP) is a funding proposal from some domain’s funding pot to one of
its children’s. It starts out in the active state and is thus immediately eligible for funding. It may
be cancelled at any time by the Creator.

Ordering of BFPs

When created, a basic funding proposal gets placed at the back of the queue. Users can give a
proposal ‘backing’ weighted by their reputation in the source domain9 at the time of backing10.
The more reputation backs a proposal, the higher up the queue it is placed. Every transaction
that adds backing to a proposal (or otherwise updates the backing level) inserts the proposal in the
correct place in the queue. Only the proposal at the front of the queue accrues funds.

There are no costs to backing a proposal (other than gas costs) and the users obtain no direct
benefits; it does not represent them putting their earned reputation at risk, nor any tokens — it
merely helps the proposal achieve funding in a more timely fashion, and benefits them indirectly
by helping the colony run better.

The rate of funding for BFPs

The more reputation backs a proposal, the faster it is funded. The rate scales linearly, and at the
limit, if 100% of the reputation in the source domain backs a basic funding proposal, then that
funding proposal will be funded at a rate of 50% of the domain’s holdings (of TokenType) per week.
The goal is a steady and predictable allocation of resources directed collectively by the domain’s
(reputation weighted) priorities.

When a user backs a proposal, both the user and their reputation at the time are recorded.
Consequently, the user is able to update their backing at a later date. However, we note that such
an update is not automatic and even if a user loses reputation due to bad behaviour, their backing
level remains unchanged until explicitly updated. Anyone is allowed to make this update – imagine
a scenario where a user lost a lot of reputation due to bad behaviour, and other users wanted to
stop a funding proposal backed by that user from continuing to accrue funding.

We emphasised that a user could back a proposal with their reputation at the time of backing
because the reputation backing a proposal will not change when that user’s reputation does so. If
by a quirk in this system, the reputation recorded as backing a funding proposal ends up higher
than 100% of the total of that reputation in the colony, then the funding occurs no quicker than it
would at 100%.

Completing a BFP

If an update finds that a proposal is fully funded (i.e. TotalPaid = TotalRequested), it is removed
from this queue to allow the next-most-popular funding proposal to accrue funds. Explicitly, the

9The source domain of a BFP is the domain of the funding pot that the funding proposal is From.
10A user’s reputation may change, but the backing weight is recorded at the time of backing and does not change

without further user action.

25

following steps need to happen:

1. The time at which the funding proposal was fully funded is calculated.

2. TotalPaid is set to TotalRequested.

3. The BFP is removed from the queue.

4. The next BFP in the queue is promoted to the top of the queue, and its LastUpdated time
is set as the time calculated in 1.

Three days after the BFP has been fully funded (and thus complete) the creator’s stake is
released. Until that time, the stake can be slashed by the arbitration permission.

3.2.3 Priority funding proposals

A priority funding proposal (PFP) is a funding proposal that can request funds to be reallocated
from any pot to any other at any rate. PFPs begin in the inactive state and can only become
active via an explicit vote. The vote is based on reputation in the domain that is the most recent
common ancestor of the two pots that money is being transferred between. We imagine PFPs will
be used to:

• reclaim funds from child domains.

• reclaim funds from cancelled tasks.

• fund tasks across domains.

• set aside funds designated as a person’s salary.

• make large, one-off payments.

Unlike Basic Funding Proposals, Priority Funding Proposals are not ordered in a queue — all
active PFPs are eligible to receive funding at any time. Note that, since the amount of funds
transferred is ultimately a function of the funds available, too many large PFPs can interfere with
each other (and the leading BFP) by substantially reducing the amount of funds available in the
funding pot.

3.3 Budget box
As an alternative to funding queues, colonies may instead choose to use a Budget Box11 to allo-
cate funding between subdomains (or to divide funds among multiple recipients of an expenditure).
Compared to funding queues, in which items are funded serially, Budget Boxes allow items to be
funded in parallel, proportionally out of some fixed budget. Budget Boxes are described in detail
in [?].

Depending on the usage, the extension would need the funding and potentially administration
permissions.

11See https://colony.io/budgetbox.pdf

26

3.4 Motions and disputes
The most successful organisations are those which are able to effectively and efficiently make deci-
sions, divide labour, and deploy resources. Often, these many decisions are structured via manage-
ment hierarchies. But trustless colonies are intended to be low trust, decentralised, and pseudony-
mous — a hierarchy is not suitable.

In most DAO frameworks, the mechanism of collective-decision making is usually voting, but
Colony is designed for day-to-day operation of an organisation. In a colony, voting on every decision
is wholly impractical. The emphasis should be on ‘getting stuff done’ and not about ‘applying for
permission’. Therefore, Colony is designed to be permissive. Task creation does not require explicit
approval (Section 3.1), nor do basic funding proposals (Section 3.2) or any number of administrative
actions throughout a colony.

The Motions System provides a self-regulating mechanism which, via a balanced set of incen-
tives, lets users keep their colony running harmoniously. It is there to resolve disagreements and to
punish bad behaviour and fraud. The motions system allows colony members to signal disapproval
of and potentially force a vote against users who have acted inappropriately.

When a member of a colony feels that something is amiss, they may make a motion. By doing
so, they are fundamentally proposing that either a) a variable, or more than one variable, in the
colony should be changed to another value, or b) a user, or more than one user, should receive a
reputation penalty. For this reason we call supporters of the motion the ‘change’ side and opponents
the ‘keep’ side.

The user making the motion must also put up a stake of the colony’s internal token (see Section
3.4.2). In essence, they are inviting the rest of the colony to disagree with them. In the spirit of
avoiding unnecessary voting, the motion will pass automatically unless someone else stakes on the
‘keep’ side and thereby elevates the motion to a dispute.

We say that a dispute has been made whenever a motion has found support on both the ‘change’
side as well as the ‘keep’ side. Once raised, disputes must be resolved by voting.

3.4.1 Making motions

The user making a motion submits the following data:

• The data that should be changed, or users to receive penalties.

• The reputation(s) that should vote on this issue (a maximum of one from each of the domain
and skill hierarchies).

• Proof that these reputations should be allowed to make the change in question.

The first item identifies the subject of the motion, and what the appellant believes the state
should be.12 The second and third points concern appeals. The basic rule in Colony is: you cannot
appeal a decision to higher management, you can only appeal to larger sets of reputation.

For example, suppose that the motion concerns a task in the ‘frontend’ domain. The appellant
could choose to have all ‘development’ reputation vote on it — we say the decision was ‘appealed

12The exact structure of this is dependent on the method used to implement contract upgradability. The function
that uses it is likely to require being coded with inline assembly in the contracts, and require significant effort in the
client to make it intuitive to generate and verify.

27

to the development domain’. In this example, the third point would be a proof that the domain
‘frontend’ was indeed a subdomain of ‘development’. The highest domain any decision can be
appealed to is the root domain, where all domain reputation is entitled to vote.

Whenever an appeal occurs, we need to ensure that the reputation we are appealing to is a
parent of the reputation associated with the variable being changed. This is possible to do efficiently
because of metadata that is placed on the reputations (for domains) when they are created, which
includes pointers to at least the direct parent (see Section 2.5.3). When a user makes a motion,
instead of directly specifying the domain they are appealing to, they provide the steps needed to
get there from the domain associated with the variable that is to be changed. This ensures that
the domain they appeal to is a direct parent of that associated with the variable.

3.4.2 Costs and rewards

Cost of making a motion

To make a motion, a user must possess enough reputation and must also stake some number of the
colony’s tokens. The reputation they need to be able to make the motion depends on the domain
they are appealing to; the ‘higher up’ the decision goes, the higher the reputation requirement (and
potential loss). To be able to create a motion, the user must have 0.1% of the reputation in the
domain and must stake 0.1% of the corresponding fraction of tokens. Thus, if a motion involves
13% of total colony reputation, then the motion requires 0.013% (0.1% of 13%) of reputation and
the required stake is 0.013% of all colony tokens.

If the initial user does not have the required number of tokens or reputation, they can still
create such a proposal by staking as little as 10% of the tokens required, which requires them to
have a correspondingly smaller amount of reputation.13 In this case the motion will not be ‘live’
until other users stake tokens, and take it over the 0.1% threshold. The amount of tokens required
to be staked for a particular motion is recorded at the time when it is created. Users can only stake
tokens in proportion to the reputation they have. For example, if they wanted to stake 40% of the
tokens required, they must have at least 40% of the reputation that would be required to create
the motion outright.

Cost of opposing a motion

Once enough tokens have been staked on a motion it becomes active and, barring any further
actions for three days, the suggested change will take place (when the motion is ‘pinged’ by a user).
However, if there are users who oppose the suggested ‘change’, they may stake tokens in support
of the ‘keep’ side. If the keep side receives sufficient support, a dispute is created.

If the ‘change’ side does not garner enough support in three days, the motion fails and is rejected.
If, three days after the ‘change’ side had enough tokens staked and the ‘keep’ side does not, then it
is assumed that the change is acceptable.

Voting on disputes

If both sides stake the required number of tokens within the time limit, then the dispute goes to
a vote. The weight of a user’s vote is the sum of their reputations in the skills chosen by the user

13This basic minimum required to propose a change prevents users from spamming motions — even those that
won’t ever be voted on — to large numbers of people, which would impede the smooth running of the colony.

28

who originally made the motion.
The duration of the poll is determined by the amount of reputation eligible to vote as a fraction

of reputation in the colony. If a larger fraction is eligible, the longer the poll is open for. The
minimum duration is two days and the maximum is seven. This is a trade-off between allowing
disagreements between small groups to be resolved quickly, but to also allow adequate debate to
occur when more people are involved.

Voting takes place using a commit-and-reveal-scheme. This scheme is desirable because votes are
kept secret during the voting period, preventing users from being influenced by what they perceive
to be the majority opinion.14 To make a vote, the user submits a hash that is keccak256(secret,
optionId), where optionId indicates the option that the user is voting for. Once voting has closed,
the poll enters the reveal phase, where a user can submit (secret, optionId) and the contract
calculates keccak256(secret, optionId) to verify it is what they originally submitted.

As the secret is revealed it cannot be sensitive. It must also change with each vote so that ob-
servers cannot establish what people are voting for after they have revealed their first vote. While
there are many reasonable schemes for generating secure secrets, we suggest a (hash) of the con-
sequence field of the poll signed with their private key, as it is easily reproducible by a client at a
later date with no local storage required.

To combat voter apathy, 10% of the staked tokens are set aside to pay voters when they vote: if
a voter has 1% of the reputation allowed to vote on a decision, they receive 1% of this pot that is set
aside. They receive this payout when they reveal their vote, regardless of the direction they voted
in or the eventual result of the decision. This ‘payout regardless of opinion’ is to avoid us falling
victim to the Keynesian beauty contest [7], in which due to receiving a reward for being “correct”,
voters are incentivised to vote for what they believe most other people will vote for, rather than
what they independently believe. Any tokens that would have been awarded to users who abstained
from voting, or are not revealed in the reveal window, are sent to the root domain funding pot once
the poll closes.

Once a vote has been in the reveal phase for 48 hours, a transaction may be made to finalise
the vote. Any subsequent reveals of votes do not contribute to the decision being made, but serve
only to unlock the user’s tokens if it was a token-weighted or hybrid vote (see below).

Consequences of the vote

If the ‘change’ side wins the vote then the change in question is made, but only if the reputation
that voted for this outcome is more than previous votes on the same variable. If the ‘keep’ side
wins, then the variable is not changed. In either case, the fraction of total reputation in the colony
that voted for the winning side is noted.

At the conclusion of the poll, losing stakers receive 0-90% of their staked tokens back and they
lose the complementary percentage of the reputation that was required to stake. The exact amount
of tokens they receive back (and therefore reputation they lose) is based on:

• The fraction of the reputation in the colony that voted.

• How close the vote ultimately was.
14Even better than commit-and-reveal voting would be receipt-free voting in which votes are never revealed, as

this would disincentivise vote-buying. Unfortunately the technology to make this possible is still under development.

29

At the end of a vote, if the vote was very close, then the losing side receives nearly 90% of
their stake back. If the vote is lopsided enough that the winning side’s vote weight (w) reaches a
landslide threshold (L) of the total vote weight, then they receive 0% of their staked tokens back.
L varies based on the fraction of total reputation in the colony that voted (R):

L = 1− R

3
. (2)

So for a small vote with little reputation in the colony being allowed to vote, the decision has
to be close to unanimous for the losing side to be punished harshly. For a vote of the whole colony,
the landslide threshold L reduces to 67% of the votes — i.e. the reputation of the colony overall
was split 2-to-1 on the decision.

Between these extremes of a landslide loss and a very slim loss, the loss of tokens and reputation
suffered by the losing side beyond the 0.1 minimum (∆) varies linearly:

∆ = 0.9×min

{
w − 0.5

L− 0.5
, 1

}
(3)

and so the total loss (0.1 + ∆) varies between 0.1 and 1.

What happens to the tokens lost?

Any tokens lost beyond the initial 10% are split between the colony and those who staked on the
winning side, proportional to the amount they staked. Half of the reputation lost beyond the initial
10% is given to those who staked on the winning side, and half is destroyed (the colony as a whole
having reputation has no meaning, unlike the idea of the colony as a whole owning tokens).

The motivation here is efficiency — it aims to discourage spurious motions and disputes. A
close vote is a sign that the decision was not a simple one and forcing a vote may have been wise.
Therefore, the opposition should not be harshly punished. On the other hand, if a vote ends in a
landslide, it is a sign that the losing side was going up against a general consensus. We encourage
communication within the colony. Members should be aware of the opinions of their peers whenever
possible before motions are made.

Repeated motions

In order to reduce the number of repeated motions and disputes over the same variable, the fraction
of total reputation in the colony that voted for the winning side is recorded after every vote. This
is the threshold that must be exceeded in any future vote in order to change the variable again.
We reiterate that this value is updated after every vote on the variable, even if the decision was to
maintain the current value of the variable.

This requirement is the primary driver of the appeals process. If a decision was made in a domain,
with low voter turnout, then it may be possible to reverse the decision by holding another vote in
the same domain (along with a more vigorous off-chain get-out-the-vote campaign). However, if
a large fraction of the domain’s reputation participated in a vote, then the only way to gain the
support of a larger body of reputation (necessary to reverse the decision) would be to appeal the
motion to a higher domain, or to a larger body of skills.

There is one exception to this rule: to ensure that a variable can always be changed if necessary,
this threshold for changing the variable is ignored if the motion was appealed to the root domain

30

of the colony. Anytime a vote is held in the root domain, regardless of prior votes on the variable,
the variable can be changed.

3.4.3 Types of vote

Depending on the context and potential consequences of the vote, Colony supports three types of
voting. The type of vote a particular action merits is predetermined based on the action, and is
not a choice of the appellant.

Reputation-weighted voting

Most votes in a colony will be due to motions related to tasks. In these cases, the weights of the
users’ votes is proportional to the reputation that each user has in the domain and skill that the
vote is taking place in. When such a vote starts, the current reputation state is stored alongside the
vote. This allows the current reputation state to be ‘frozen’ for the context of the vote, and prevents
unwanted behaviours that might otherwise be encouraged (for example, delaying submission of a
task until closer to voting so that the reputation earned has not decayed as much).

When revealing their vote, the user also supplies a Merkle proof of their relevant reputation
contained within the reputation state that was saved at the start of the vote. The total vote for
the option they demonstrated they voted for is then incremented appropriately.

Token-weighted voting

While Colony encourages the use of reputation as the primary sibyl-resistance mechanism, there are
situations where tokens are more appropriate. Specifically, if reputation is a stand-in for ‘labour’,
and tokens are a stand-in for ‘capital’, then token-weighted votings are appropriate whenever a
decision must be made by capital, rather than by labour. Whenever a decision would be made by
‘investors’ or ‘shareholders’ in a conventional firm, a token-weighted vote may be appropriate.

Unlike with reputation, we do not have the ability to ‘freeze’ the token distribution when a
vote starts. While this is effectively possible with something like the MiniMe token [8], we envision
token-weighted (or hybrid) votes will still be regular enough within a Colony that we do not wish
to burden users with the gas costs of deploying a new contract every time.

When conducting a token-weighted vote, steps must be taken to ensure that tokens cannot be
used to vote multiple times. In the case of ‘The DAO’, once a user had voted their tokens were
locked until the vote completed. This introduced peculiar incentives to delay voting until as late as
possible to avoid locking tokens unnecessarily. Our locking scheme avoids such skewed incentives
by locking tokens only during the reveal period.

Instead, once a vote enters the reveal phase, any user who has voted on that poll will find
themselves unable to see tokens sent to them, or be able to send tokens themselves — their token
balance has become locked. To unlock their token balance, users only have to reveal the vote they
cast for any polls that have entered the reveal phase — something they can do at any time. Once
their tokens are unlocked, any tokens they have notionally received since their tokens became locked
are added to their balance. This global lock prevents a scenario, for example, where one user would
reveal their vote and then send tokens to a colluding user, who would then reveal their vote using
the augmented token balance.

31

It is possible to achieve this locking in constant gas by storing all submitted secrets for votes in
a sorted linked list indexed by closeTime. If the first key in this linked list is earlier than now when
a user sends or would receive funds, then they find their tokens locked. Revealing a vote causes the
key to be deleted (if the user has no other votes submitted for polls that closed at the same time).
This will unlock the tokens so long as the next key in the list is a timestamp in the future. A more
detailed description of our implementation can be found on the Colony blog [9].

Insertion into this structure can also be done in constant gas if the client supplies the correct
insertion location, which can be checked efficiently on-chain, rather than searching for the correct
location to insert new items.

Hybrid voting

A hybrid vote would allow both reputation holders and token holders to vote on a decision. We
envision such a vote being used when the action being voted on would potentially have a sizeable
impact on both reputation holders and token holders. This would include altering the supply of the
colony tokens beyond the parameters already agreed (see Section 3.5.1) or when deciding whether
to execute an arbitrary transaction (see Section 2.8).

In order for a proposal to successfully pass through a hybrid vote a majority of both reputation
and token holders who vote must agree that the change should be enacted.

3.5 Miscellaneous
3.5.1 Token management

While root users can mint tokens at-will, in many cases it will be desirable to mediate this ability
via an extension contract. Here we describe such an extension.

Token generation and initial supply

When the extension is deployed, the TokenSupplyCeiling and the TokenIssuanceRate are set.
The former is the total number of colony tokens that will be created and the latter is the rate at
which they become available to the root domain to assign to subdomains or expenditures. The
number of tokens available to the root domain can be updated at any time by a transaction from
any user (i.e. a public function will determine the pro-rated amount of tokens to generate since the
last distribution).

Increasing the TokenSupplyCeiling

It is advised that new tokens not be generated without widespread consensus — especially if tokens
have a financial value. Consequently, such decisions require a vote with high quorum and majority
requirements involving both the token holders and reputation holders.

Changing the TokenIssuanceRate

The TokenSupplyCeiling represents the total number of tokens that the token holders have granted
to the colony in order to conduct business: to fund domains and expenditures, and to incentivize
workers and contributors.

32

The TokenIssuanceRate controls how rapidly the colony receives the new tokens. If the rate
is ‘too high’, tokens will accumulate in the funding pot of the root domain (or other funding pots
lower in the hierarchy). If the rate is too low, this signals that the colony has a healthy amount of
activity and that the issuance rate has become a bottleneck. In such situations it may be desirable
to increase the rate of issuance without necessarily increasing the maximum supply.

Increasing and decreasing the TokenIssuanceRate by up to 10% can be done by the reputation
holders alone and this action can be taken no more than once every 4 weeks. Larger changes to the
issuance rate should additionally require the agreement of existing token holders.

3.5.2 Compensation Modalities

Using expenditures, it is possible to implement many types of compensation modalities. In addition
to the ‘task’ (see Section 3.1), we can conceive of a number of additional modalities of compensation.

Salaries

Tasks imply colony-worker relationships are mostly transactional. In many cases, it is desirable to
represent more long-term relationships via a salary.

A salary can be as simple as a recipient, amount, and period, and lastClaimed. At any point,
the recipient can ping the salaries contract, at which point the contract will create an expenditure
made out to the recipient, with funding equivalent to the pro-rated amount since the last salary
payout. If the recipient is willing to pay the gas costs, they could conceivably claim (a fraction of)
their salary daily, or choose to claim weekly, monthly, or at whatever cadence suits them. It would
be the responsibility of the colony to ensure that adequate funding is available in the domain out
of which salaries are to be paid.

This extension would need the funding and administration permissions to manipulate tokens
and expenditures on behalf of the recipients.

Recurring or Automatic Tasks

While for certain kinds of work, tasks are unique and must be individually scoped out and sub-
jectively evaluated. However, we can imagine situations where work can be done by many people
and/or evaluated automatically by computer (such as rewarding users for participating in a referral
program). In these cases, a variation of the task which contains logic for evaluating the work, and
allows anyone to submit the work, would be appropriate.

This extension would need the funding and administration permissions to manipulate tokens
and expenditures on behalf of the recipients.

3.5.3 Awarding reputation for work not captured by tasks

All reputation decays over time, as described in Section 2.5. This prevents a permanent ‘reputation
aristocracy’ and allows reputation to remain relevant even after major changes in the colony token’s
value.

Reputation is awarded when a user receives payment of a colony’s internal token — most com-
monly as payout from an expenditure, but sometimes from motions resolution and, in the case of
the Metacolony, from the reputation mining process. We can use the expenditure mechanism to
award users extra reputation when there is consensus to do so.

33

Consider the scenario in which a founder, or an important early contributor to a colony has
almost no reputation left by the time the colony starts earning revenue; perhaps the development
of the product took a long time or perhaps the reputation decay rate was sub-optimally high for
the particular colony.15 Or perhaps the founder was doing a lot of intangible work to get the colony
off the ground in the first place and so was never compensated properly on-chain. To get around
the limitations of the reputation system and to re-integrate the founder (and make them eligible
to receive their rewards), the colony can create an expenditure that is solely designed to award
the reputation they are due. To qualify for the payout of tokens (and thereby the reputation), the
user in question would have to give the same number of tokens back to the colony. Again, a good
frontend abstraction could make such reputation awards easy and intuitive.

Another important scenario concerns absences due to maternity/paternity or illness – the rep-
utation system should not implicitly discriminate against these users. While ‘pausing’ reputation
decay is not a viable option, various mechanisms of giving reputation ‘for free’ can be used to ensure
that these users retain their reputation during periods of unavoidable absence.

The important point is that any limitations imposed by the system can be weakened if there is
consensus to do so. The system should not stand in the way of consensus, it should just provide
conflict resolution mechanisms for those times in which there is dissent.

3.5.4 Motions by non-members

Having reputation is a prerequisite for creating a motion or staking an opposition. Therefore, if
an outsider is hired by a colony to perform a task, they will not, on their own, be able to make a
motion in defense of their work. However, a good colony frontend may allow them to create the
template for a motion, effectively calling for members of the colony to support it and submit the
motion to the colony network on-chain on their behalf.

This is analogous to a member staking only 10% of the required amount and waiting for further
support from their peers (Section 3.4.2), with the difference being that without any third party
support, the motion would never be processed on-chain.

15Finding an optimal decay rate for reputation in the network will depend on empirical data collected from early
colonies. It is also possible that in the future reputation decay rates can be configured per-colony.

34

4 The Colony Network
The Colony Network is a collection of contracts on the Ethereum blockchain. At the core of the
network is the ColonyNetwork contract. This contract is primarily responsible for managing the
reputation mining process (see Section 5), but also for general management of the network: deploy-
ing new colonies, setting the fees associated with using the network, and releasing new versions of
the Colony contracts. These actions will be mediated by a special colony, the Metacolony.

4.1 Revenue model
The Colony Network must be able to sustain itself. In particular, the Metacolony (which controls the
Colony Network) maintains the contracts that underpin the network and develops new functionality
for the network — development of which needs to be paid for. Long term, the development and
maintenance of the network (including the reputation system) needs to be financed by the network
itself.

4.1.1 The network fee

We propose a fee levied on expenditure and reward payouts. When a user claims a payout, some
small fraction will be paid to the network. The fees are sent to either the Metacolony (if the
payment was in Ether or another whitelisted ‘currency’ token) or the Colony Network contract (if
it is any other ERC20-compatible token). A cartoon showing the revenue split is show in Figure 5.

Payout
3%

User

Colony Network contract

Metacolony revenue

97%
Currency
tokens

Other
tokens

auction

Figure 5: Summary of the revenue split upon payout for a task.

This idea of a fee is a little unusual for such a decentralised system. One of the appeals of
decentralised systems on Ethereum is that other than gas costs, they do not seek rent and are
free to use. However, the network fee is key to ensuring the game theoretic security of the Colony
Network’s reputation mining and governance processes, by providing underlying value to the CLNY
held by Metacolony members. Importantly, this fee is not payable to any centrally controlled entity,
but rather to the Metacolony. As anybody may contribute to the Metacolony, anyone may claim a
share of these fees proportional to their contribution. We believe that the benefit of being part of
a secure, well maintained network will be appealing enough that a small fee to pay for its existence
will be acceptable.

35

The presence of this fee means we have to make some considerations which would otherwise be
irrelevant. Primarily, we will need to make ‘piggyback’ contracts as hard as possible to make that
might e.g. be used to pay out an expenditure payout when a expenditure was finalized, but without
sending the fee.

4.1.2 The token auction

As the network fee may be denominated in any ERC20 token, there is a need for a mechanism to
liquidate arbitrary bundles of tokens: the token auction. The tokens collected are auctioned off
by the Colony Network Contract, with the auctions denominated in Colony Network Tokens, the
proceeds of which are burnt. These auctions — one for each type of token collected — occur on a
regular basis of once a month.

We believe such a mechanism will be beneficial for the Colony Network Token holders (whose
tokens gain value by having an explicit use beyond reputation mining) and the Metacolony itself (by
reducing the supply of Colony Network Tokens and thus making any future minting more valuable).
It also provides an immediate mechanism of price discovery for a colony’s internal tokens, which
are unlikely to be traded on third-party exchanges until much later in the lifetime of the colony.
By auctioning off the collected tokens, we also prevent the Metacolony collecting a large number of
different tokens that it has to manage, which would prove cumbersome and annoying.

4.2 The Metacolony and CLNY
The Metacolony is a special colony which governs the Colony Network. Tokens in the Metacolony
are known as CLNY and will be initially generated during the Colony Network distribution period.16

4.2.1 Role of CLNY holders and the Metacolony

CLNY holders have two primary roles. The first is to participate in the reputation mining process,
described in Section 5. The second is management of the Colony Network itself. There will be
permissioned functions on the Network Contract to allow fundamental parameters of the network
to be set, which can only be called by the Metacolony. For these permissioned functions to be called
by the Metacolony, a vote open to all CLNY and reputation holders must be conducted.

Management of the Colony Network also includes making updates to Colony contracts available
to colonies. CLNY holders are not necessarily responsible for the development of these updates,
but are required to vote to deploy them. They are therefore responsible for at least ensuring
due diligence is done, either by themselves or by service providers, to avoid introducing security
weaknesses or other undesirable behaviour. In return for the responsibility of the development
and maintenance of the Colony Network, the Metacolony is the beneficiary of the network fee (see
Section 4.1).

Reputation in the Metacolony can be acquired by earning CLNY tokens by via expenditure
payouts just as in any other colony (see Section 2.5.2). Reputation in the Metacolony can also be
earned by participating in the reputation mining process (see Section 5.8), which is unique to the
Metacolony.

16The mechanism of this distribution are yet to be defined.

36

4.2.2 Handing off decision-making power to the Metacolony

Colony Network Token holders are responsible for reputation mining from the start, but decisions
about the underlying properties of the network will initially be made by a multisignature contract
controlled by the Colony team. As the network develops and is proved to be effective, control over
these decisions will cede to the Metacolony.

Stage 1: Colony team multisig in control

Initially, the Network Contract’s functions will be root-permissioned to only allow transactions
from the multisig contract under the control of the Colony team to change these properties of the
network.

Stage 2: Colony team multisig approval required

At a later date, an extension contract will be set up and given the root permission. This contract
will allow the Metacolony (as a whole, via the governance mechanisms provided to all colonies)
to propose changes to be made to the Colony Network Contract. The intermediate contract will
have functionality such that all changes will have to be explicitly allowed by the account under the
control of the Colony team. In other words, the Metacolony will be able to propose changes, but
the team must sign them off.

Stage 3: Colony team multisig retains veto

The next stage will be a second extension contract operating similarly to the first, but after a
timeout — with no interaction from the Colony team’s account — the change will be able to be
forwarded to the Colony Network Contract by anyone. The Colony team’s role will be to block
changes if necessary. Thus at this stage the Metacolony will be able to make changes autonomously,
but the Colony team retains a veto. The proposal to move to this contract will have to come from
the Metacolony itself.

Stage 4: Metacolony fully controls the network

Finally, the specialized extension contract will be removed and replaced with a generic voting
extension (see Section 3.4), and the Metacolony will have direct control over the Colony Network
Contract with no privileged control available to the Colony team other than that provided by any
CLNY and reputation held.

37

5 Reputation Mining
The reputation system is a core component of any decentralised colony. By carefully balancing the
rewards and penalties we aim to keep every users’ incentives aligned with the colony and the colony
network. Since reputation can only be earned and not transferred between accounts, the system
fosters a more meritocratic form of decision making than pure token-weighted voting can hope to
achieve. The continuous decay of reputation ensures that the influence conveyed by reputation is
recently earned and up-to-date. As such, it prevents a reputation aristocracy and allows for a fluid
passing of control from one set of contributors to another over time.

Due to the combined complexity of reputation scores across multiple colonies, domains, and
skills, reputation scores cannot be stored or calculated on-chain. Instead, the calculations will all
take place off-chain, the results of which will be reported to the blockchain by participating CLNY
holders — in a process resembling a proof-of-stake blockchain consensus protocol. We call this
procedure Reputation Mining.

The reputation calculation whose result the miners are submitting is determined by the activities
that have taken place in the colonies and can be fully deterministically derived from the Ethereum
blockchain. Game-theoretically the system is protected similarly to the off-chain calculations of
TrueBit ([4]) in that, while the calculation cannot be done on-chain and a correct submission can
never be proved true, an incorrect calculation can always be proved to be wrong.

5.1 Merkle-Patricia trees and proofs
This subsection contains only a summary of Merkle-Patricia trees ([5], [6]) and Merkle proofs in
order to establish some terminology, and can be skipped if already familiar with them.

A Merkle-Patricia tree, or ‘trie’, is a key-value store with two special properties: efficient inser-
tion and lookup, and a compact cryptographic state signature. Put succinctly, it is Patricia in the
branches, and Merkle in the nodes – the branching of the tree is determined by the keys (in a way
which avoids redundant tree traversal), while the values in the nodes are determined by recursively
hashing the values inserted in the leaves.

Consider the tree shown in Figure 6, in which every values has a 4-bit key. The data leaves
of the tree (1, 2, 3 and 4), which correspond to the keys (0000, 0010, 00111, and 1011), are each
hashed individually to give A, B, C and D. These are then repeatedly hashed pairwise, following
the branching structure determined by the keys, until only a single hash remains, indicated by G.
The resulting structure is known as a Merkle-Patricia tree. In order to prove that the element 1 is
in the tree with root G, one submits a Merkle proof containing the information (0000, 1, [E,D],
[1010]). The first pair of arguments are the key-value pair whose existence is to be proved. The
third argument is the array of node hashes (‘siblings’) that the leaf hash should be recursively
hashed with. The last argument, the ‘branch mask’, is an array of 1’s and 0’s that indicate which
bits of they key correspond to the branching points (in this case, the first and third most-significant
bits). So to show that 3 was in the tree with root G, the proof would be of the form (0011, 3,
[B,A,D], [1011]).

38

A

1

B

2

C

3

D

4

E

0 1

F

00 1

G

00

1011

Figure 6: A simple Merkle-Patricia tree with 4-bit keys. Element A is
the hash of value 1, with a key of 0000. Element E is the hash of B
concatenated with C, and so on recursively up to the root G. Changing
any leaf value will change the root, the essential property.

5.2 The Reputation Tree
The key-value pairs in the reputation tree are the reputations all users have in all skills, as well as
the colony-wide totals. A single key-value pair consists of the following data:

k =


colony address of the colony the reputation is in
user account address holding the reputation
skill skill id of the reputation

v =

{
amount numerical value of the reputation
nonce unique per-leaf id (used in reputation mining)

All individual reputations are assembled into the Reputation Tree which is a Merkle-Patricia
tree of all individual reputations in a colony, as well as the total reputation of each type held by
the users in each colony. The leaves that represent these colony-wide totals are indicated by setting
user to zero. These leaves are then inserted into the tree as described in Section 5.1. We term the
root hash of the resulting tree the ReputationRootHash, RH.

The ReputationRootHash is the only data we record on the blockchain associated with users’
reputations. It summarises the state of the whole reputation system and whenever a user wishes
to make use of their reputation, they can submit a Merkle proof from the reputation Ri they wish
to make use of and ending at RH.

5.3 Calculating the new root hash
To calculate the new root hash, the miners begin with the last reputation state, and decay all
reputations held by all users in all colonies, in the order of the leaf nonces. They then take the set

39

R0 R1 R2 R3 · · · RN

H(R0) H(R1) H(R2) H(R3) H(RN)

H0,1 H2,3 HN−1,N

H0,3

ReputationRootHash (RH)

Figure 7: The Merkle tree of users’ reputations with ReputationRootHash
as the root. We use H to indicate the keccak256 hash function.

of reputation gains or losses that were not in the last state submitted, and are to be included in
the next state (the update log). They apply the reputation updates to each user in each colony,
updating or adding leaves as necessary (following the process described in 5.5.1), to end up with
a new list of reputations for all users and colonies. These new reputations are then hashed and
assembled into a new Merkle-Patricia tree yielding an updated ReputationRootHash.

While the calculation is too large to be done on-chain due to technical and economic limitations
(i.e. the block gas limit and the cost of gas, respectively), this calculation can easily be performed
by a typical user’s computer.

5.4 Submission of a new root hash
What is submitted?

The final ReputationRootHash is submitted to the contract by the miner along with the number of
leaves in the tree (NReputationLeaves). The miner also submits the root hash of the Justification
Tree (see Section 5.5.1), which will be used in the event of a dispute. These three properties uniquely
identify a submission.

Who can submit a new root hash?

All Colony Network Token holders are eligible to become miners and participate in the reputation
update process. Since any user can calculate the correct root hash locally, it should be possible for
any miner to submit the hash to the contract.

It is however undesirable to have too many submissions for every update. We propose a mech-
anism that only allows some miners to submit results to begin with. To participate in the mining
process, Colony Network Token holders must stake some of their tokens to become ‘reputation
miners’. A submission will only be accepted from a miner if

uint256(keccak256(address, N, hash)) < target.17

17Note that internally the arguments are encoded using abi.encodePacked before being hashed.

40

At the beginning of the submission window, the target is set to 0 and slowly increases to 2256 − 1
after 1 hour. We limit the total number of miners allowed to submit a specific hash to 12. In the
unlikely event that no submissions are received before the 1-hour window has elapsed, exactly one
submission will be accepted, whenever it is received.

The variable N that goes into the hash is some integer greater than 0 and less than the number
of tokens the Colony Network Token holder account has staked divided by 2000 ·1018 meaning that
users with a large stake have a higher chance of qualifying to submit a hash sooner than smaller
stake holders. The factor of 2000 · 1018 is introduced to ensure that all hashes a user is eligible
to submit can be calculated in a few seconds by the client. It also effectively creates a minimum
number of tokens that must be staked to submit a hash. This puts a tangible cost on any attacks
revolving around spamming known false submissions (see Section 5.7).

When a miner stakes, the timestamp of the stake is recorded.18 In order to be eligible to submit
a hash, the miner must have staked before the beginning of the current mining cycle.

Verifying a submission

If only one state is submitted by the end of the submission period, then the new state is accepted,
and proposals of the next state can begin to be made. This is expected to be the most common
occurrence.

If more than one state has been submitted, then either someone has made a mistake, or there
is a malicious entity trying to introduce a fraudulent reputation change. In this event, the a
challenge-response protocol can establish which state is incorrect (see Section 5.5).

Mining rewards

When a state is accepted, a number of (newly minted) Colony Network Tokens are made available
for the users who submitted the correct state to claim as a reward. They also receive a corresponding
amount of reputation in the Metacolony (in a special mining skill, which only users in the Metacolony
can earn by performing this task). This reputation update is no different from any other, aside
from the limitations of who is able to earn it, and will be included in the subsequent reputation
update cycle. The size of the rewards and their distribution are described in Section 5.8.

5.5 Dealing with false submissions
We assume that the correct hash is one of the submitted hashes. This is a reasonable assumption,
as only one out of all the miners is required to make a correct submission, and there is an incentive
for them to do so (the reward defined in Section 5.8). Thus our task is not to validate the correct
hash but to invalidate the false one(s).

We must prove all but one submission incorrect by having each submission prove that they cal-
culated more correct reputation updates before getting one wrong (if any) than another submission
they are being compared against. Anyone is able to respond to a challenge (and be rewarded),
regardless of who submitted the original hash; this should ensure that the correct state is always
defended, even if some miners go offline.

We consider the scenario where only two submissions are made, and one is correct. In the event
of more than two submissions, this same pair-wise comparison described below is repeatedly run
(in parallel, where possible) among remaining submissions until only one remains.

18If a miner adds additional stake, the timestamp is set to the weighted average of the existing and new timestamps.

41

5.5.1 The Justification Tree

A client submits a JustificationRootHash (JRH) as part of the process of submitting a proposed
new root hash. This is the Merkle root of the ‘Justification Tree’ – a Merkle-Patricia tree where each
leaf represents not a single reputation value, but the root hash of an entire reputation state. The
left-most leaf of the Justification Tree is the final accepted reputation state from the last update
(RH0) concatenated with the number of leaves (L0) in the reputation tree RH0 is the root of.
The right-most leaf of the Justification Tree is the ReputationRootHash they submitted (RHN)
concatenated with the number of leaves it contains (LN). We denote these leaves as RH0 · L0 and
RHN · LN .

The intermediate leaves represent the evolution of the global reputation state after applying
some subset of the full sequence of reputation updates required. Each state represented by a leaf
differs from the reputation states in neighboring leaves in at most a single reputation.19 In order
to do this in a consistent way, we must order all the updates in a reputation cycle. The canonical
ordering for reputation updates is:

1. All decays of existing reputations, in order of nonce,

2. The entries in the reputation update log, in order of appearance in the reputation update
log. A single one of these entries corresponds to at least two reputation updates with an
unbounded upper limit (since there can be many parent and child updates). These updates
are themselves ordered:

(a) Colony-wide total of any impacted child reputations

(b) Colony-wide total of any impacted parent reputations

(c) The colony-wide total of the origin reputation

(d) User-specific child reputations

(e) User-specific parent reputations

(f) User-specific origin reputation

The origin reputation is defined to be the skill specified in the reputation log where the
reputation is to be lost or gained. Where multiple child reputations are required to be updated
as part of 2a or 2d, they are done so in the order they appear in the children property of
the origin skill. Where multiple parent reputations are required to be updated as part of 2b
or 2e, the immediate parent is updated first, then the immediate parent of that skill, and so
on until no parents remain. We do the decay calculations first to give users the benefit of the
doubt during reputation updates so they do not lose reputation they have only just earned to
premature decay.

As a miner applies the reputation updates for a cycle in this order, they should take each inter-
mediate ReputationRootHash values and build the Justification Tree by adding the intermediate
ReputationRootHash values concatenated with NReputationLeaves to the tree, with key equal to
the update number, starting from 0. Note that unlike in the Reputation Tree, the keys should not
be hashed. This will become important further on in the dispute process, as we will need to be able

19It is possible for two adjacent leaves to be identical if the reputation update the transition between them represents
does not result in a change in reputation – e.g. a reputation loss in a reputation that is already zero.

42

RH0 · L0 RH1 · L1 RH2 · L2 RH3 · L3 · · · RHN · LN

H(RH0 · L0) H(RH1 · L1) H(RH2 · L2) H(RH3 · L3) H(RHN · LN)

0 1 0 1

0 1

Justification Root Hash (JRH)

Figure 8: The Justification Tree. The leaf containing H(RH0 · L0) – the
last accepted reputation state – is found at key ...00. The leaf containing
H(RH1 · L1) – the reputation state with the decay of the existing skill
with nonce 0 applied – is found at key ...01. Every intermediate state
is recorded in the tree up to H(RHN · LN), which is the proposed new
reputation state with all reputation updates applied.

to identify sequentially adjacent reputation updates. The intermediate leaves of the Justification
Tree represent the evolution of the reputation state, with RHi corresponding to the reputation
state after the first i reputation updates in this cycle have been applied. An example of such a tree
is shown in Figure 8.

5.5.2 Resolving a dispute

If a dispute occurs, the first step is for each submission to verify the Justification Tree they submitted
alongside their proposed new root hash.

1. Verifying the Justification Tree

For a justification tree to be deemed valid, it must:

• Have H(RH0 · L0) at key 0,

• Have H(RHN · LN) at key N ,

• Have a plausible structure.

The first two items are relatively straightforward to prove via Merkle proof. The last requirement
requires slightly more explanation. A Justification Tree with two leaves could meet the first two
requirements, but we would be able to tell this tree wasn’t plausible as a Justification Tree because
the Merkle proofs supplied to prove the first two requirements would not be of the expected length.20

20We know that every reputation cycle will at least have log entries for rewarding those who submitted the previous
reputation state successfully.

43

This length is calculable because we know how many leaves are meant to be in the tree and what
keys they are expected to be at (every key between 0 and N). We are also able to determine the
branchmasks that these proofs should have (the binary representations of 2⌈log2(N+1)⌉ − 1, and N
respectively), which further constrains the shape of a plausible tree.

Unfortunately, based on these two proofs, we are unable to guarantee the Justification Tree
contains a leaf at every key from 0 to N . This is because we do not know how many leaves the
siblings used in the Merkle proofs contain, and it is not feasible to request a proof for every key
between 1 and N − 1. This is why the constraint is limited to being ‘plausible’. With the approach
we have taken, however, we are at least able to guarantee that key N is the last in the Justification
Tree, that key 0 is the first (though this is a trivial consequence of it existing), and there are at
least some number of other keys in the tree.21

Since any two differing submitted states agree on the first leaf RH0 (the ReputationRootHash
accepted at the end of the previous iteration of the mining cycle), and disagree on the last leaf
RHN (the hash they submitted), there must be a hash RHi that they agree on, and a hash that
RHi+1 that they do not. This is a reputation update where they agree on the starting state but
disagree on the result. This transition is meant to be the effect of a single reputation update (the
ith), and this is the reputation update we will calculate on-chain to establish which submission is
incorrect.

First, however, we must establish where the two submissions begin to differ.

2. Searching for the discrepancy

The contract requires both parties to submit repeated Merkle proofs to locate RHi+1, the first
disagreement hash. We shall call the two parties A and B and we shall indicate which party made
a submission by a superscript of A or B. Furthermore we introduce the simplifying notation of h
to mean ‘sibling of h’ in the Merkle tree.

Along with their justification root hashes JRHA and JRHB both parties have already submitted
proofs for the left-most leaf. Ignoring the branchmasks for simplicity, these proofs have the form:

RH0
A
, h0,1

A
, h0,2

A
, . . . h0,2k

A
terminating at JRHA

and
RH0

B
, h0,1

B
, h0,2

B
, . . . h0,2k

B
terminating at JRHB

where k is the largest integer such that 2k is smaller than n.
When the first miner (say A) submits their proof the contract saves the values of hA

0,2k and

h0,2k
A
. When the second miner submits their proof the contract compares hA

0,2k to hB
0,2k . If they

are not equal, the contract saves both of these values (and forgets h0,2k
A
). If they are equal, the

contract retains the values of h0,2k
A

and h0,2k
B

(forgetting hA
0,2k).

The rationale behind this behaviour is the following: If hA
0,2k = hB

0,2k then the two justification
trees are equal between RH0 and RH2k−1 and the first discrepancy must lie in the right-hand subtree

21This number is ⌈log2(N + 1)⌉+#1(N)− 2, where #1(N) is the binary logarithm of the Nth integer in Gould’s
sequence. To derive this expression, consider how many siblings each proof requires; each sibling corresponds to at
least one other key. In our case, #1(N) provides the number of set bits in the branchmask of the proof for key N i.e.
how many siblings that the Merkle proof of key N has. The −2 accounts for the key-value pairs stored at 0 and N .

44

whose root is h0,2k
A

for miner A and h0,2k
B

for miner B. If on the other hand hA
0,2k ̸= hB

0,2k , then
the first discrepancy must lie in the left-hand subtrees given by hA

0,2k and hB
0,2k . The situation is

summarised by

hA
0,2k ̸= hB

0,2k =⇒ First discrepancy occurs at some RHi with 0 ⩽ i < 2k

hA
0,2k = hB

0,2k =⇒ First discrepancy occurs at some RHi with 2k ⩽ i < n

The contract begins its search by picking an index j from within the range the first discrepancy
in known to lie in (say always the smallest), and requiring both parties to provide a Merkle proof
showing value of ReputationRootHash and NReputationLeaves at that key in the Justification
Tree. The required target of this proof is no longer the JRH itself, but rather the retained value
for h0,2k or h0,2k .

The process as before of comparing hashes and retaining the roots of either the left-side subtree
or the right-side subtree is repeated. With each iteration, the range of possible values for the index
of the first discrepancy is reduced by (on average) a factor of two and the length of the required
Merkle proofs is reduced by at least one.

There are two ways this process can terminate. The first way the process terminates is when
one party does not respond to a challenge in adequate time, either because they could not or chose
not to. In this case the party not responding is deemed to be incorrect. The other way the process
terminates is when it has reached the bottom of the tree and determined i, the disputed reputation
update.

3. Confirming i

Once the contract has found the index i such that RHA
i = RHB

i but RHA
i+1 ̸= RHB

i+1, the contract
then requires each party to submit the value stored at the key i + 1 in the Justification Tree to
confirm that it is there. It is possible that this was already done during the binary search, but it
is not guaranteed. The value of the ReputationRootHash and NReputationLeaves at this key are
stored in the contract managing the dispute resolution. Again, if one party does not respond in
time, they are assumed to be incorrect.

4. Deciding which submission performed the correct calculation

In most cases, only one of the two submissions will be able to perform the transaction corresponding
to this step. There are several types of calculation and checks that might need to take place, depend-
ing on which transition the two submissions first disagree on, and the values of ReputationRootHash
and NReputationLeaves they placed in their Justification Trees. All of the following must be per-
formed on chain to verify the calculation under dispute.

• Check the key As part of the Merkle proofs submitted (see the next step), the key of the
reputation under dispute is submitted. This is a concatenation of the colony address the
reputation is in, the skill the reputation is in, and the account address holding the reputation
(which is possibly the zero address if the total reputation in the colony is under dispute).
Based on the value of i, which has already been established during the binary search, and the
known canonical ordering of reputation updates, the contract is able to check these values. In
the case where the update under dispute is due to a log entry (as opposed to normal decay),
the index of the log entry under dispute is supplied by the user and verified on-chain, to avoid
iteration over the unbounded log.

45

• Check the claimed before and after values The values of the reputation at key in RHi

and RHi+1 for the submission in question are proved via Merkle proof. If it is claimed an
existing reputation is being updated, then the proofs’ siblings and branchmask are required
to be the same to guarantee no other reputations have been changed. If a new reputation is
claimed to be being added (indicated by Li+1 −Li = 1), the proof for the reputation in RHi

is not required as the reputation should not be in the tree, but an additional check will be
performed later to confirm this.

• Perform the calculation This has two elements. The first is to check that the nonce for
the reputation has not changed in the leaf if an existing leaf is being updated. If a new leaf
is being added, the value of the nonce is checked to be one larger than the Li that they have
provided (as each nonce is given in sequence). The second is to check that the value of the
reputation is correct. It can be a decay, or an update due to an entry in the log, the potential
consequences of which are described in section 5.6.

• Additional checks Depending on the type of update being disputed, additional checks may
be required

1. Any additional reputation values needed for the calculation are proved to be in RHi

(which both parties agree on the value of) as required via Merkle proof. The canonical
ordering of reputation updates ensures that any values required for the calculation un-
der dispute are present in RHi and have not yet been altered by the log entry under
consideration.

2. Similarly, if a new leaf is added, a Merkle proof for the reputation in RHi with the
previous nonce is checked to confirm the nonce assigned to the new node is plausible.

3. If during the calculation, the user claims that a reputation they need for a calculation
does not exist in RHi, and so they will use a value of 0, they must prove it does not
exist in the tree.22

4. If a new reputation value is being added to the tree, we also prove that the reputation
that it ends up closest to in the tree exists in RHi. We are therefore able to deduce
what the proof for that reputation in RHi+1 should be if only the new leaf is added. By
checking this Merkle proof is valid, we ensure no other changes have been made to the
reputation tree.

It is possible that both submissions will successfully submit the transaction that validates their
submissions as described here. This can happen when a new leaf is being added, and the submissions
have disagreed over the nonce the reputation should be given. Whichever has successfully awarded
the highest nonce is deemed the correct submission. If neither party responds to a particular stage
in this process in time, both are eliminated from consideration.

If the 1-hour mining cycle window has not elapsed by the time only one submission remains, the
next window only opens when the current window has elapsed. If the 1-hour window has elapsed
by the time the dispute process has finished, the next submission window opens immediately.

22They do this by providing a Merkle proof for an existing reputation in RHi whose hashed key has the longest
shared prefix with the hashed key of the reputation being added. By examining the branchmask of this proof, and
the (hashed) keys of the proved reputation and the reputation being claimed to not exist, the contract is able to
confirm the latter does not exist in RHi. If a key with a shorter shared prefix is used, the branchmask will already
contain a branch point where they diverge and this proof will fail.

46

5.6 Calculating reputation updates
5.6.1 Keeping track of reputation changes

Fundamentally, there are two types of reputation update that occur:

• Decay of existing reputation.

• Addition or removal of reputation as a reward or punishment.

When a user earns reputation in a skill or domain, they also earn reputation in all parent
domains, which corresponds to 2× (n_parents+ 1) reputation updates. Alternately, when a user
loses reputation, they also lose reputation in all parents and all children representing a total number
of updates of 2× (n_parents+ n_children+ 1). The factors of two here come from also updating
the relevant colony-wide totals.

In Section 2.5.3, we asserted we store n_parents and n_children for all skills and domains. It is
only by having access to the number of parents and children for each reputation and the reputation
update log recording how many reputations have been updated already in this update cycle (via
n_updates) that the resolution protocol is able to perform the binary search of the justification
trees submitted by the disagreeing users. At the start of the challenge protocol, the contract can
look up the last entry in the update table for the cycle under consideration, and work out how
many updates have occurred in this cycle based on the number of updates prior and the number
of parent and child reputations. After verifying that both submitted justification trees contain this
exact number of leaves it can proceed to the binary search.

If the discrepant transition is a decay transition they must also supply a Merkle proof that the
starting value assumed for the user corresponds to the value that user had at the end of the last
update cycle. A decay transition is identified by the Merkle path corresponding to an index in the
justification tree smaller than the number of leaves in the reputation tree at the end of the last
successful update.

5.6.2 Earning reputation for the first time

When a user earns reputation in a new skill, at least one new leaf is added to the tree — if they
have not earned reputation before in some of the parents, then they will also cause further new
leaves to be added. Additional new leaves will be added if they are the first user in a colony to earn
those particular skills, making the total reputation for that skill in the colony non-zero. During a
dispute, when the user proves that they have included the update in the tree, it is not possible to
check (efficiently) on-chain that they should not have added it to an existing leaf instead. However,
because during the resolution process we are always comparing two submissions against each other,
one of two things will be true:23

• Both submissions added a new leaf to the tree. If there was a discrepancy, then it is in the
maths conducted on this leaf, not the addition of the leaf itself. The maths can be checked
on-chain to establish which result is correct.

• One submission adds the new reputation to an existing leaf (the correctness of which can be
checked on-chain easily). In this case, the user who added the leaf incorrectly is wrong.

23Assuming that one of the two submissions is correct.

47

5.6.3 Transfers of reputation between accounts

The most important quality of reputation that distinguishes it from a token is that it is tied to an
account and cannot be transferred. However, in the event of disputes (Section 3.4) it can happen
that one party to a dispute loses reputation while the other gains. This process has to be modelled as
a ‘reputation transfer’ to ensure that reputation is never created in this process (i.e. the reputation
lost by the loser is at least as much as the reputation gained by the winner).

If an entry in the reputation update log indicates that a dispute has occurred and been resolved,
then there will be a number of transfers of reputation between users represented by a single entry.
Each such transfer will have to accommodate the updates of all the parents of the reputation being
gained by one user, and updates of all the parents and children of the reputation being lost by the
other. However, we have to ensure that the user who is losing reputation still has the reputation
to lose if another user is gaining it.

To achieve this, all the transactions that correspond to updating the reputations of the user
gaining the reputation are done first. In the event such a transaction must be proved to be correct
in the resolution protocol, the users can provide a proof of the losing user’s reputation, prior to
them losing it in this event in update cycle, and this can be compared to the amount of reputation
intended to be gained. Whichever is smaller is used as the amount of reputation the user is gaining
during the calculations.

Then, when calculating the reputation deduction to be applied to the losing user, the reputation
that was used as the voting weight should be done last i.e. all the children and parents should be
considered first, as it is the amount of the reputation that was eligible to vote that will determine
the fraction lost of each of the child reputations.

For further details about reputation transfers and disputes, see Appendix A.1.

5.6.4 The reputation decay calculation

The reputation decay process was described above as being continuous. In practise, it will decay
by a small, discrete amount during each reputation update cycle following an exponential decay.
However, such a calculation is not possible to do accurately on-chain during the resolution protocol,
so we must use an approximation. The details of the approximation we use, and a proof that this
approximation is accurate and will not affect the running of (active) colonies can be found in
Appendix A.2.

5.7 Denial of service attacks
In the event of multiple submissions, finding the correct one takes time — the timeout t for the
challenge-response must be reasonable to allow the transaction defending a submission to propagate
and be mined. A denial-of-service attack is therefore possible, whereby an attacker makes many false
submissions. However, if these false submissions were random hashes, unable to be defended, then
none would be defended correctly within the first timeout window, and the attack would quickly
end. For pairings where neither submission is defended, any user can remove both submissions from
consideration and claim the tokens that were staked to allow submission.

The denial of service attack (to delay a proper reputation update) can only be sustained when
the false submissions are incorrect only in some leaves, and the majority of the justification tree is
correct. In this scenario, the attacker successfully defends each of their submissions for as long as
possible to delay the resolution of the reputation mining protocol as much as possible.

48

Any such attack is capped by the first round of pairings of submissions against each other. Even
if the attacker made millions of submissions, only a finite number of those would be able to be
successfully defended due to the block size — currently, no more than 4500 submissions would be
able to be defended, even if the attacker used up all block space during the timeout.24 With only
4500 submissions able to make it to the second round, the length of time the DoS attack would be
sustained for is given by

t× ⌈log2 (4500)⌉ × ⌈log2 (Nupdates)⌉

where Nupdates is the number of reputation updates that have been made in this update cycle. To
arrive at this figure, we know there will need to be ⌈log2 (4500)⌉ rounds of comparison between
submissions to eliminate all but one. Each round will require ⌈log2 (Nupdates)⌉ interrogations of
the justification tree to establish where the two submissions being compared differ. Finally, each
interrogation can take up to t before it is considered to have timed out and one or both of the
submissions is deemed invalid. The product of these three factors tells us how long this reputation
update can be delayed by an attacker.

Long term, Nupdates will be dominated by the decay transactions rather than by any updates
that have occurred since the last reputation state was established. Even if the Colony Network were
wildly successful, with 100000 colonies, each with 1000 users that had earned some reputation in
1000 different skills in each of the structural and skill hierarchies, and using 5 minutes as the value
of t, the delay to the reputation updates would only be around 36 hours. Recent congestion on the
Ethereum network has shown that we will need to be able to accommodate situations where block
space is at a premium; the reputation mining client will need to recognise when this is occurring,
and send transactions with higher gas prices as appropriate in order to meet the timeout deadline.

There would be little effect on the rest of the Colony Network in this time. Users would still
be able to exercise their reputation from the previous reputation update, and continue to influence
decisions with that reputation. Indeed, this shows what perhaps the main motivation for such an
attack would be — if a user knew that they had been ‘caught’ behaving badly, and was due to lose
all their reputation, they might try such an attack to eke out the last bits of influence they possibly
could. However, decisions in the Colony network do not resolve quickly, and in a well-developed
colony we would not expect any one person to have a large amount of reputation when compared
to the rest of the colony. It therefore seems unlikely any one user would be able to unduly influence
decisions significantly while conducting such an attack.

Assuming this attack continued, then the reputation mining protocol would effectively only
update every 36 hours. Users staking would become more susceptible to variance in terms of the
rewards, but otherwise little would change in the day-to-day functioning of any individual colony.

However, the attacker would lose all the Colony Network Token that they had staked (which
would be around 4500 times the expected minimum stake) in order to perform the attack, and so
would have to buy more to attack again making this attack exceedingly expensive.

Note: There is an edge case to consider in which the attacker is sending enough defending
transactions to completely fill the blocks. In such a case however we assume that the defence of the
legitimate state is always successfully included in block, as a one-off increase in gas costs will always
be worthwhile to ensure the legitimate state is defended. Between now and the deployment of the
Colony Protocol, we will carefully observe the Ethereum network to gather empirical data about

24These figures assume 1.5π × 106 gas in a block, and that each transaction is only 21000 gas for a worst-case-
scenario calculation.

49

the cost and practicability of such an attack and will adjust the timeout parameter t accordingly.
Longer timeout periods make this attack exceedingly difficult and expensive, but would also slow
down the resolution protocol.

5.8 Costs and rewards of mining
In order to be involved in the reputation mining process, Colony Network Token holders must stake
their tokens with the Colony Network Contract. This allows them to submit a reputation hash as
part of the reputation mining process described above.

If they submit a new hash, this is recorded and they are noted as the first account to submit
that hash. If they submit a hash that has already been submitted, they are appended to a list of
users that have submitted that hash. The system allows for a maximum of 12 miners to be added
to the list in each round. The same miner is allowed to appear on the list multiple times, but using
different values of N in the inequality (5.4) on page 40.

If a hash is found to be incorrect, all those who submitted it lose some of their stake. If a hash is
deemed correct, however, the miners who submitted it gain Colony Network Tokens and reputation.

The total amount of reputation earned by miners is not fixed, but varies along with activity in
the Metacolony. The system tries to ensure that on average, 25% of Metacolony reputation comes
from mining.

Suppose that the reputation earned in the Metacolony every hour due to all activity (mining
included) is constant at h, then eventually the colony will reach a steady state in which the decay
of reputation is balanced out precisely by the newly earned reputation and

Rtot

(
1− e−k

)
= h (4)

where k is the decay constant used in each update period (see Appendix A.2) and Rtot is the total
reputation in the Metacolony. If one quarter of all reputation is to come from mining, then the
hourly mining reward M in this situation should be given by

M =
h

4
=

Rtot

(
1− e−k

)
4

. (5)

The actual mining rewards are calculated based on the above model and we define the total
reputation to be earned by miners in a given hour to be given by equation (5).

Miners who make a submission in a given reputation update cycle are entitled to a share of this
reward. When a miner makes their submission, their weighting for that submission is calculated
and recorded, and this is added to the total weights of all submitters for this hash so far. The nth

submitter has a weight of

wn =

(
1− exp

(
−tn
T

))
×

(
1− n− 1

N

)
(6)

where tn is a number of seconds that the nth miner has staked their tokens for and T and N are
normalising constants. T is set to a number of seconds representing 90 days, and N is set to twice
the length of the list of submitters — in our case N = 24.

The first factor in equation (6) encourages users to stake their tokens for long periods of time
when they register as miners. When locking tokens for T seconds, this first factor grows to 0.63,
when locking for 2T it grows to 0.86, and the factor approaches 1 as the locking time approaches

50

infinity. The second factor in equation (6) encourages miners to submit the hash as soon as possible,
with this factor becoming smaller the later users submit; the first submission will have twice the
weight of the last submission, all other factors being equal.

Once the submission window has expired, and either there was only one submitted hash, or all
but one submitted hash has been proved to be wrong, any user can make a transaction to make
this submitted hash the canonical reputation state used by the network until the end of the next
update cycle. This transaction mints and transfers the CLNY reward to the miners, as well as
adds reputation changes for the miners to the start of the reputation change log, where they will
be included in the next update cycle.

The reward earned by each miner on the list is given by

mn = M
wn

W
where W =

12∑
n=1

wn (7)

i.e. the mining reward M is divided among the miners according to their relative weighting.

5.9 Emergency shutdown
Section 2.7 described a transaction from a whitelisted account can put a colony into ‘recovery mode’
during which the state can be edited, the effects of bugs can be corrected and upgrades can be made.
Similarly, the reputation mining process will also have an emergency stop-and-repair mechanism
(to begin with). This will allow the whitelisted accountes to revert the reputation root hash to a
previous version and halt all updates to the reputation state until the issues have been resolved
(which will likely involve a contract upgrade). The colonies will be able to continue operations as
usual using the reputations of the last valid state, which will be temporarily frozen and not decay.

51

6 Conclusion
We have described and defined the Colony Protocol — an organisational operating system built on
Ethereum. It provides a general purpose framework for the creation, management, and operation
of decentralised organisations of various kinds.

The specification contained herein represents our current best description of the Colony Protocol.
It is however, a working document, and it should be expected that the final specification will differ
substantively, both as a consequence of the rapidly changing technological landscape, and the
refinement of our understanding of the requirements of decentralised organisation through iterative
cycles of development and user testing.

Acknowledgments
The authors would like to thank the following people for their comments, suggestions, and other
contributions: Alexei Akhounov, Alex Amsel, and Sebastian Klier.

References
[1] R. H. Coase. The Nature of the Firm. Economica, 4(16):386–405, 1937. ISSN 1468-0335.

http://www3.nccu.edu.tw/~jsfeng/CPEC11.pdf.

[2] ERC: Token standard #20. https://github.com/ethereum/EIPs/issues/20.

[3] Peter Borah. EtherRouter. https://github.com/ownage-ltd/ether-router.

[4] Jason Teutsch and Christian Reitwießner. A scalable verification solution for blockchains. http:
//people.cs.uchicago.edu/~teutsch/papers/truebit.pdf.

[5] Ralph C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In
A Conference on the Theory and Applications of Cryptographic Techniques on Advances in
Cryptology, CRYPTO ’87, pages 369–378. Springer-Verlag, London, UK, 1988. ISBN 3-540-
18796-0. https://people.eecs.berkeley.edu/~raluca/cs261-f15/readings/merkle.pdf.

[6] Vitalik Buterin. Merkling in Ethereum. http://blog.ethereum.org/2015/11/15/
merkling-in-ethereum/.

[7] J.M. Keynes. The General Theory of Employment, Interest and Money, chapter 12. Harcourt,
Brace, 1936.

[8] Griff Green. The MiniMe Token: Open Sourced by Giveth. https://medium.com/giveth/
the-minime-token-open-sourced-by-giveth-2710c0210787.

[9] Elena Dimitrova. Token-weighted voting implementation. http://blog.colony.io/
token-weighted-voting-implementation-part-1-72f836b5423b.

52

http://www3.nccu.edu.tw/~jsfeng/CPEC11.pdf
https://github.com/ethereum/EIPs/issues/20
https://github.com/ownage-ltd/ether-router
http://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
http://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://people.eecs.berkeley.edu/~raluca/cs261-f15/readings/merkle.pdf
http://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
http://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://medium.com/giveth/the-minime-token-open-sourced-by-giveth-2710c0210787
https://medium.com/giveth/the-minime-token-open-sourced-by-giveth-2710c0210787
http://blog.colony.io/token-weighted-voting-implementation-part-1-72f836b5423b
http://blog.colony.io/token-weighted-voting-implementation-part-1-72f836b5423b

A Appendices

A.1 Gas-Efficient Reputation Penalty in Dispute Resolution
Once a dispute has been raised and settled one way or the other, the users on the losing side will
lose reputation and those on the winning side will gain it. If there is then a disagreement during
the reputation mining mechanism, we must be able to calculate on-chain, in a gas-efficient way, a
specific reputational consequence of the dispute being settled. A dispute may affect the reputations
of many users, but all of these reputation changes are represented by only a single entry in the
‘reputation update log’, so it is necessary to expand upon the process used to resolve this.

Given that users are able stake small amounts on each motion, an arbitrarily large number
of users could theoretically be involved. Gas limits dictate that we must therefore not have any
(on-chain) loops in this implementation.

A.1.1 Staking

As noted in Section 3.4.2, a motion requires 0.1% of the reputation queried and 0.1% of the corre-
sponding fraction of tokens to be staked’ to be considered valid, but that just 10% of this amount
is sufficient in order to create such a proposal. The exact numerical values of how much reputation
and how many tokens are needed, is set at the time the proposal is first created. We proceed with
a detailed example.

Let us consider a situation where a motion requires 600 tokens and 1200 reputation points to
activate. User A initiates the motion and puts up a stake of 100 tokens. In order to do this, A
must have at least 200 relevant reputation points at the time. Assume that users B and C support
the motion, staking 200 and 300 tokens (and having 400 and 600 reputation points) respectively.

Table 1: A table of stakes showing part of what is recorded during the
dispute process up to the point where the ‘change’ side has received enough
support of 600 total tokens staked.

Stake # User Staked Tokens Σ+

1 A 100 100
2 B 200 300
3 C 300 600

For simplicity, the table does not contain entries for reputation. The corresponding amounts of
reputation at risk are implied.

Once the cumulative backing (Σ+) reaches the threshold required (600) the motion becomes
active. Now we assume that two users (D and E) oppose the motion with matching funds of 150
and 450 respectively.25 Once the cumulative backing on the keep side (Σ−) reaches the required
threshold (-600) a dispute is triggered.

We assume that, in the dispute, the initiating users (A, B and C) were found to have been
wrong and so will lose some of their stake. To keep this example simple, let us pretend that they
lose 50% of their staked tokens to the opposing side (D and E). They will also lose a corresponding
amount of relevant reputation, or all of their relevant reputation, whichever is smaller.

25We write negative numbers in the table to denote opposing stake.

53

Table 2: A table of stakes showing part of what is recorded during the
dispute process up to the point where both the ‘change’ and ‘keep’ sides
have received 600 tokens of support.

Stake # User Staked Amount Σ+ Σ−

1 A 100 100 0
2 B 200 300 0
3 C 300 600 0
4 D -150 600 -150
5 E -450 600 -600

We will assume that all users have the appropriate amount reputation to lose (i.e. A, B and C
did not lose their reputation between the time of backing this proposal and the resolution of the
dispute). We will also assume the dispute only affected domain reputation, not skill reputation.26
There are four transfers of reputation that must occur here:

1. User A loses 100 reputation to User D

2. User B loses 50 reputation to User D

3. User B loses 150 reputation to User E

4. User C loses 300 reputation to User E

Indeed, in a group of m people where some owe the others a debt, the maximum number of
transfers required to make everyone whole is equal to m − 1. If the reputation being lost has p
parents and c children, there are up to p+ c+ 1 domain-totals to be updated (as some reputation
is destroyed), p + c + 1 reputations for the losing user, and p + 1 totals for the gaining user (who
does not receive any reputation in any child domains). Thus there are up to 3+ 3p+2c reputation
updates that must occur at each of these steps. There are therefore (m−1)×(3+3p+2c) reputation
updates in total. In the event of a disagreement regarding the reputation state, we must be able
to access the nth update directly when calculating an update on-chain. This is made possible by
additional logging of data when stakes are made.

When a user stakes and opposes some existing stake that does not yet have a counterpart, we
record the stakes that it is matching against as well as any remainder.

Table 3: Table showing additional data recorded for stakes that match
against earlier stakes on the opposite side.

Stake Match From Match To Remainder Tx # From Tx # To
-150 1 2 50 1 2
-450 2 3 0 3 4

When staking, the user supplies the ‘Match From’ and ‘Match To’ arguments. These can be
checked to be correct on-chain in constant gas by using the values of Σ+ and Σ− recorded alongside
previous stakes, and the remainder from the previous match. Then, when a miner is asked to prove

26In the case of affecting both, the number of updates required is doubled.

54

a particular transaction has been included, they can point to the row in this log that contains that
transaction without the contract having to iterate over an arbitrarily long list. The user’s client is
required to do this iteration locally to find the row, but this does not require any gas expenditure.

A.1.2 Exact matching

For the ‘reputation update log’ to work correctly, we must know exactly how many reputation
updates we have to consider. In the above example, it was 4 × (3 + 3p + 2c), which could be
calculated and recorded easily in the update log. However, consider an example where the staked
amounts were

Table 4: An example staking for each side where fewer than the upper limit
of transfers for four people are required. Only two transfers are required
to exactly balance the users.

Stake # User Staked Amount Σ+ Σ−

1 A 100 100 0
2 B 200 300 0
3 C -100 300 -100
4 D -200 300 -300

Even though there are four people, only two transfers are required — from user A to user C,
and from user B to user D. This is because the users have accidentally matched themselves exactly,
and so one transaction makes two users ‘whole’. In order to accommodate this possibility in the
reputation update log, we insert dummy reputation transfers in the log whenever an exact match
occurs:

Table 5: Table showing what is recorded for stakes that match against
earlier stakes on the opposing side, in the case where some match exactly.
The entries with 0 stake are used to ensure there are four transactions
recorded, even if not all are needed.

Stake Match From Match To Remainder Tx # From Tx # To
-100 1 1 0 1 1

0 0 0 0 2 2
-200 2 2 0 3 3

0 0 0 0 4 4

These dummy insertions occur whenever the remainder is 0 — i.e. when the new stake has
exactly matched the first unmatched stakes. This ensures that this log always describes as many
transactions as there are people (the last entry is always a dummy transaction as the final transac-
tion will always make two users whole). This means that regardless of how the users have matched
up against each other, the event that is recorded in the reputation update log will have a known
number of transactions equal to the number of staking users, even if some of those are ‘null’ trans-
actions.

55

A.2 Reputation Decay Calculation Details
Reputation in any skill decays by a factor of two every 90 days. At each update (i.e. after every 1
hour), the new decayed value (unew) is calculated by

unew = uold × exp

(
− ln 2

2160

)
= uold × exp (−k) .

This calculation is applied separately to each user’s skill, as well as the number that represents
the total of all of those skills in the colony. Due to rounding error with the integer representation
on the blockchain, these numbers will drift away from each other. However, we can show the
accumulated error will be negligible. The amount of reputation that will be incorrectly missing
after the first iteration will be, on average. 0.5N reputation wei, where N is the number of users
that have this skill.27 The 0.5 is the average fractional part lost during each calculation.

After the second iteration, the amount of reputation that is incorrectly missing is

0.5N exp (−k) + 0.5N.

The second term here is the incorrectly lost reputation from this second set of calculations. The
factor of exp (−k) has been introduced to the term representing the incorrectly lost reputation from
the first set of calculations because some of that incorrectly lost reputation would have correctly
decayed away by this point, and so it shouldn’t be considered incorrectly lost.

It is apparent that this is a geometric series, and after b cycles of reputation update have passed,
the amount of reputation incorrectly missing (Rm) is

Rm =
N

2

(
1− exp (−bk)

1− exp (−k)

)
where we have used the standard result for the sum of a geometric series. If we started with R0

reputation, then the ratio of the incorrectly missing reputation to the total the colony believes
exists is

Rm

R0 exp (−bk)
.

This ratio becomes 1 when

b =
1

k
ln

(
2R0

N
(1− exp (−k)) + 1

)
which, for conservative values of R0 = 200 × 1018 and N = 1000000 occurs after 38011 iterations,
or over 4 years for a 1 hour mining cycle. At this point, even though the colony believes some
amount of reputation exists, no users have it, and no users can make decisions related to this type
of reputation.

This is the end-of-life for an inactive colony; if no activity takes place in it for 4 years that is
worthy of earning reputation, then the colony will be irrecoverable — no-one will be able to create

27This ignores the incorrectly lost reputation from rounding error introduced when decaying the colony-wide
sum of the relevant reputation, but as there is only one total and many more users, ignoring it does not change
our conclusions. We also note that there is an implicit assumption here that all users have the same amount of
reputation; this is a worst-case assumption, as if it is not true then once some users have lost all their reputation the
reputation incorrectly lost on each cycle will drop below 0.5N .

56

tasks to earn further reputation. This seems like a reasonable failure mode for an inactive colony,
and it would take longer to reach for smaller colonies (with fewer rounding errors).

We now consider the case of an active colony. If the colony is active and creates A new reputation
at every update cycle, how does the ratio between the figure taken to be the total reputation and
the incorrectly missing reputation change over time?

Rm remains the same in this situation, but the total reputation the colony believes exists in-
creases by A each cycle. After b iterations, we can show that the total reputation the colony believes
exists is

R0 exp (−bk) +A
1− exp (−bk)

1− exp (−k)
.

As b tends to infinity — which represents the regime of a colony in a steady state — the ratio
between this and Rm tends to

N

2A

i.e. for the discrepancy to be small between what the colony thinks the total reputation inside it
is and the sum of all users’ reputations, the reputation earned in each cycle should, on average, be
much larger than the number of users. Given that reputation will be expressed in terms of numbers
on the order of 1018, this seems assured.

For calculating the exponential decay, we will use the first-order Taylor expansion of the expo-
nential decay i.e. we approximate exp (−k) as 1 − k. Given that k is small, this will be a good
approximation — the second order term is on the order of 10−7. This error will cause all reputations
to decay slightly faster than an exponential, but otherwise will have no effect.

When calculating the decay, in order to accommodate the fact that we are multiplying by a
value close to one and only integers are available in Solidity, we will multiply the user’s reputation
by K(1 − k) (calculated off-chain), for some large value of K, and then divide by the same large
factor K.

57

	Overview
	Preamble
	Theory of the firm
	Confidence and trust

	Structure of a Colony
	Domains and permissions
	Funding and expenditures
	Internal tokens
	Revenue and rewards
	The reputation system
	Managing stakes
	Upgradability and security
	Arbitrary transactions

	Extending Functionality
	Tasks
	Funding queues
	Budget box
	Motions and disputes
	Miscellaneous

	The Colony Network
	Revenue model
	The Metacolony and CLNY

	Reputation Mining
	Merkle-Patricia trees and proofs
	The Reputation Tree
	Calculating the new root hash
	Submission of a new root hash
	Dealing with false submissions
	Calculating reputation updates
	Denial of service attacks
	Costs and rewards of mining
	Emergency shutdown

	Conclusion
	References
	Appendices
	Gas-Efficient Reputation Penalty in Dispute Resolution
	Reputation Decay Calculation Details

