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Abstract

In this white paper, we introduce Inchain architecture: a novel distributed ledger tech-
nology (DLT) architecture to be embedded inside existing self-sovereign blockchains.
Inchain utilizes existing availability and consensus mechanisms, but operates indepen-
dently of the data integrity rules of the blockchain, reducing the scalability portion of
the "Blockchain Trilemma” to a question of data throughput. By sharing availability and
consensus, the Inchain architecture enables tighter coupling than the existing art. Central
to the Inchain architecture is the more recent proof theory related to verified outsourced
computations.

We introduce Coinweb, a public DLT that spans multiple self-sovereign blockchains.
Multiple cooperating Inchain instances create tight semantic coupling safely between these
blockchains, by delaying information propagation. Self-sovereign blockchains can join and
leave Coinweb safely, while containing a catastrophic failure of a blockchain’s consensus.
Coinweb also provides causal consistency across all member blockchains.

Finally, we demonstrate that market mechanisms for immediate information propaga-
tion between blockchains can be created on top of Inchain, utilizing the semantic coupling
between the blockchains. This reduces the risk for market participants and provides efhi-
cient elimination of information propagation delays.
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1 Overview

To introduce the technology we provide a brief introduction and social context in section 2, we
define and discuss the Inchain approach and related concepts in section 3, and contrast these
concepts against common alternatives and well-known projects in section 4. We introduce
Coinweb in section 5, a proposed cryptocurrency project following the Inchain architecture,
and detail its computation model in section 6. Finally, we conclude all details in section 6.6.



2 Introduction

If money is viewed as the accepted reward system of modern civilization, cryptocurrency can be
considered as the automated, decentralized reward system of our future civilization!. The next
generation of decentralized computations promise to act as a decentralizing force on the core
social and systemic building blocks of that civilization.

Leading the curve at present is DeFi, but following the trend established by decentralized
computations it can be safely predicted that all trust-based societal processes will operate within
DLT-based infrastructure at some point. However, as shown by the history of infrastructure,
from railways to the internet, large-scale use comes with standardisation and interoperability,
after lock-in effects have been eliminated. Infrastructure and business models for mainstream
usage must be able to adapt and scale with new innovations as they become available, while
maintaining backwards compatibility to preserve and take advantage of existing networks. This
is why creating computations at layer 2, across multiple blockchains and independent of their
underlying consensus mechanisms—thus enabling access to a continuously evolving Pareto op-
timal solution space—is key to achieving mainstream adoption.

3 Inchain

Throughout the history of technology, innovations typically start out as vertically-integrated
solutions. Broad uptake happens when a revised, layered approach is invented. Decoupling
layers in the technology stack enables faster innovation by reducing lock-in effects?.

The nascent Blockchain space is following a similar history. Several vertically-integrated
blockchain projects have been launched[3][8][12][9], but strong network effects hinder the
uptake of technical improvements in layer 1 blockchain technologies. Ethereum continues to
dominate this space.

As aresult of this fragmentation, various interoperability systems have been proposed. These
systems move data in, out, and between chains, but are not computers themselves. While
movement of data is good, these systems do not provide a robust alternative to the vertically-
integrated blockchain projects.

3.1 Inchain data

We refer to a piece of information or data as Inchain when it is commonly available within the
discussed universe, and there is a consensus mechanism that allows any participant to agree upon
it. For example, we consider that the amount of Bitcoin a Bitcoin address holds, the number
of Ethereum smart contracts executed on the eth-block 1432, or what the Litecoin genesis
block-id is, to be instances of Inchain data.

We consider a computation to be an Inchain computation when both the input to the com-
putation, and the computation result, are Inchain data. The execution of a smart contract, or

1At Bitcoin block zero, Bitcoin’s creator Satoshi Nakamoto embedded the following message: "The Times
03/Jan/2009 Chancellor on brink of second bailout for banks” The message indicates a breach of trust between the
public and the governors of the monetary system.

2For example, defining IP as layer 3 on top of layer 2 such as Ethernet, Token Ring, and ATM was critical
to the Internet’s success and longevity. Now many of these initial layer 2 protocols are not used, but the Internet
endures.



a specific hash difficulty estimation (as long as it follows a known formula), are examples of
Inchain computation. Not every value defined over Inchain data is an Inchain data, and there-
fore not produced by an Inchain computation; such as finding a non-published preimage of an
Inchain hash, because even though there is consensus over the result, it lacks availability.

We define data or a computation as offchain, when it is not Inchain.

3.2 Inchain architecture

An Inchain architecture is a DLT in which the execution layer is separated from the availability
and consensus systems. Looking more closely, an Inchain architecture reveals multiple con-
ditions: Inchain computations over multiple independent availability and consensus systems; a
consistency model for composing these computations; and mechanisms to make computational
results provable and useful for offchain participants.

Blockchains and para-chains have Inchain computations, but the results of these computa-
tions affect their consensus, making the computation and consensus layer mutually dependent.
Therefore they are not examples of Inchain architecture.

In blockchain design, there has been a fundamental conflict between building a powerful
public computer by exposing powerful computations, and obtaining decentralized consensus.
When participants in the consensus layer are required to undertake more and more computa-
tions, fewer actors can participate, and power is concentrated in fewer hands, making the system
less decentralized.

This conflict has a name, the Blockchain Trilemma, which posits that decentralization, scala-
bility, and security cannot be simultaneously obtained?. However, just as blockchain technology
itself refuted Zooko’s triangle4, we believe Inchain partially refutes the Blockchain Trilemma.

Inchain recognizes that computation, as a deterministic process®,does not need consensus,
and that consensus need only focus on ordering data. A blockchain needs an incentive system,
typically based on a combination of payment, mining, and staking, but the consensus layer of a
blockchain does not need to perform complex computations®.

By making it possible to lift complex computations out of the layer 1 blockchain, we can
try to quantify how much computation the resulting layer 1 blockchain should perform. We
do this by noting that a maximally-decentralized layer 1 blockchain, whose security depends on
participants running full nodes, should be constrained by a participant’s available bandwidth. It
is available bandwidth, not computation, that is ultimately the limiting factor for transaction
processing. Depending on security parameters such as block rate and block size, the client re-
quirements (and thus how decentralized the blockchain can be) differs, but unless it is bandwidth
constrained it is artificially constrained. This is because either: the network is not processing
enough transactions because processing transactions requires computational resources and thus
limiting transaction throughput enables more full nodes to be part of the network; or it is ex-
cluding potential full node participants due to the high cost of participation. As an example,
Bitcoin-derived blockchains are generally bandwidth-constrained, while a smart contract-based

3For example, EOS is well known as a high throughput blockchain, while Ethereum has lower throughput. At
the same time EOS is considered less decentralized than Ethereum as they make different tradeoffs in the trilemma.

4The conjecture that names could not at the same time be decentralized, secure, and human-meaningful.

SA deterministic process is one where given the same inputs, the output is always the same.

6An alternative, tongue in cheek, title for this paper could be ”Smart contracts considered harmful”
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Figure 1: Options for verifying deterministic computations

layer 1 blockchain such as Ethereum is currently artificially compute-constrained up to a decade
in the future.’

The Blockchain Trilemma is partially resolved by using the Inchain architecture, as it lifts
computational and transactional scaling from the trilemma and leaves the simpler trilemma
between decentralization, data throughput, and security.

3.3 Lifting computations to layer 2

As noted in the previous section, lifting complex computations out from the layer 1 blockchain
enables better-optimized tradeofts in the Blockchain Trilemma. Shortly following the publish-
ing of the Bitcoin paper[14], research into proofs for verifiable computations were published[11],
and work in this area continues to be published today.[13][4]

These proof protocols attempt to solve the overall problem of outsourcing a general, deter-
ministic computation to one or more workers that are untrusted. For example, a client could
use such a protocol when outsourcing a computation to a cloud computing service.

As an illustration of how this approach differs from the traditional blockchain approach, a
crucial aspect of the blockchain system is that a block includes a Merkelized version of the state
of the system, providing for any layer 1 computation to form part of what the network agrees
on in the consensus protocol.

Based on the consensus protocol of each blockchain, the consensus breaks down when a
predetermined mass of actors do not adhere to the protocol when controlling a finite resource—
either half or two-thirds of actors. By contrast, a proof protocol for verifiable computing only
requires a single honest actor adhering to the protocol.

7As bitcoind could sync the full blockchain, 250GB in around 10 hours, or at around 50Mbps[18] in 2019, this
blockchain is not compute- constrained, but rather bandwidth-constrained, and will remain so given the existing
protocol. As the growth rate for the Bitcoin blockchain is less than the growth in available bandwidth (50%
per year[16]) it becomes easier to participate as a full node in the network over time. The opposite is true with
Ethereum. Current implementations are strongly compute-constrained with a sync speed of only 0.3Mbps|2, 17,
20]. Assuming no further optimizations, and growth in available compute power (60% per year[23]) it will take
12 years for the network to become bandwidth-constrained to a level observed in the Bitcoin network today.



In short, consensus protocols solve a more general problem by agreeing on an arbitrary
value. A proof protocol solves a more constrained problem in which there can only be one valid
result.® Using a consensus protocol to prove “too complex” computations employs the wrong
tool for the job, and weakens the trilemma parameters of the layer 1 blockchain. On the other
hand, computations verified through proof protocols can be more complex at the same security
budget, as only a single honest participant is needed.

3.4 Proving state

The Merkelized state under consensus in a blockchain makes it simpler for thin clients to ver-
ify the current state. Bitcoin introduced using merkle proofs in thin clients, and most other
blockchains have continued using the same system to prove state.

Inchain retains the use of Merkle proofs to prove any state that is under layer 1 consensus,
but proving layer 2 states cannot be achieved using Merkle proofs and must be proved using
verifiable computations. Computing the correct state for layer 2 can be seen as outsourcing a
computation, where the input to the computation is the data from the layer 1 blockchain, and
the output is the layer 2 state. This is a deterministic computation, and proof protocols from
verifiable computations can be used for this computation.

A sketch proof protocol for refereed verified computations would require asking n computers
to compute the answer (Merkelized), and if there is any disagreement, execute a binary search
through the steps of the computation to find the disagreement, finally executing the culprit step
yourself.[13] [4] [22]

3.5 Consensus scalability challenges:

In principle, a system following an Inchain architecture could choose any existing consensus
mechanism as its consensus layer. It could even opt for a combination of several unrelated
consensus mechanisms as its consensus layer. For example, it could naively combine Bitcoin,
Litecoin and Ethereum, and consider any piece of information to be both available and under
consensus if it appeared on any of those blockchains. With a careful implementation to take
care of reorganizations, these could be extended to more and more blockchains, scaling the
consensuses to a broader universe. However, as the consensus scales into something broader
and more complex, several issues will arise to eventually render the system infeasible:

* Consistency stability and delay: When several different consistency and availability mech-
anisms are combined in such a way that all are depended on for the system to work, the
resulting combination becomes weaker than the sum of its parts: for eventually consistent
mechanisms, reorganizations become more frequent and deeper. For final mechanisms,
the percentage of the network we rely on for the continuation of the system grows.

¢ Computational requirements: in addition to handling a more unstable consistency and
availability mechanism (which implies more reorganizations and more wasted computa-
tion), the combined result has a more complex and bigger state, increasing the required
computational resources to handle it.

8A deterministic computation



* System fragility: relying on multiple pieces increases the chance that some might not
work as expected. If nothing is done to mitigate this, the overall system becomes fragile.

In section 5 we explore an approach which will tackle these challenges and minimize their
effects, allowing for an Inchain system consensus which could grow to embrace a greater number
of underlying blockchains.

4 Background , existing art

4.1 Ethereum

Ethereum is the largest dApp platform and provides the ability to run Turing complete ap-
plication code through its execution layer EVM. Execution of code requires a gas fee paid in
Ethereum’s native token, Ether. To verify the validity of a block, each node must make sure that
the provided gas fee is enough to perform any execution of code that the transactions will trig-
ger. This means that every node in the network must calculate the whole state of the Ethereum
network for every block that the network produces. This is a bottleneck for the capacity of the
Ethereum network, as the aggregated computation from all the nodes adds to the overhead of
the network, increasing gas prices and reducing overall bandwidth. By decoupling the calcu-
lation of the gas fee from the block composition process, it is possible to dramatically reduce
the amount of aggregated computation to therefore lower computation cost and increase useful
execution bandwidth by orders of magnitude.

4.2 The Graph

The computations done by The Graph[21] are based on data from Ethereum. These computa-
tions are independent of the Ethereum consensus mechanism. The Graph executes computa-
tions described by manifests read from IPFS[1]. The project has discussed plans to work across
multiple chains[10], but how computations are composed in the system remains unclear. For
example, implementing a token spanning multiple chains requires composing computations.

4.3 Polkadot

Polkadot[24] is a blockchain with two levels of consensus systems. The relay chain is the pri-
mary consensus system, and each member chain has their own consensus system. Similar to
a traditional blockchain, execution of smart contracts is tied in with the consensus mecha-
nism. Polkadot needs special gateway constructions in order to read and write to self-sovereign
blockchains, and these existing blockchains cannot be part of Polkadot. If a blockchain chooses
to be part of Polkadot, then it cannot be self-sovereign as the relay chain consensus must dom-
inate the local consensus.

4.4 Uniswap

Uniswap is a popular automatic market maker (AMM) project running on the Ethereum blockchain.
Uniswap uses constant product liquidity pools that can be created for arbitrary token pairs as
long as the tokens are available on Ethereum. However, 74% of the top 50 crypto assets are not



on the Ethereum blockchain, and 63% (16% excluding Bitcoin) are not on a smart contract-
enabled chain®. Wrapped tokens are used as substitutes for tokens from blockchains without
smart contracts, but this requires a substantial number of transactions and overhead. Still,
wrapped BTC is the top non-stablecoin in terms of volume on Uniswap!®. This indicates that
AMMs that can connect a larger portion of the blockchain space is a market need.

4.5 Tether

Tether is a stable token pegged to USD. The Tether token is available on multiple platforms!t,
including Omni and on Ethereum as an ERC20 token. Movement of Tether between the
platforms is mostly done through centralized exchanges but requires the issuer, Tether Limited,
or designated exchanges to manage liquidity between the different platforms. A Coinweb issued
Tether or similar stable token enables trustless movement of the token between platforms.

4.6 Crypto payment gateways

There are several companies that offer crypto payment gateways!2. Some gateways support more
than 50 different crypto currencies. Their business model involves providing a payment interface
for merchants to integrate on their webpages. The payment gateway can then accept crypto
payments on behalf of the merchant and settle them—Tless a fee. The ability to accept payments
in multiple cryptocurrencies enables the merchant to accept a wider range of customers holding
different cryptocurrencies. It also lowers the payment threshold for the customers, as they are
able to transact in the cryptocurrency of their choice. Current payment gateways are built as a
centralized system wherein payment processing and outpayments to merchants are handled by
the gateway as a trusted party. A similar payment gateway system could be implemented on
Coinweb as a dApp, where stakeholders interests would be handled in a fully trustless manner.

5 Coinweb

An Inchain architecture can be extended to cover several consensuses; this means a DLT fol-
lowing this approach could be built on top of different DLTs, operating as a unifying layer
over them to benefit from their combined network effect and different properties. Coinweb
is an instance of Inchain architecture that tries to maximise the number of blockchains that
can be covered this way, unifying them through a common currency, XCO. In the following
subsections, we’ll explore the different challenges that arise from this, and how best to approach
them.

?Adjusted for market capitalization, from coinmarketcap.com 2021-05-06. The top 50 assets have a combined
market capitalization of $2.228M. The top 50 assets that are a) not on Ethereum have a market capitalization of
$1.641M, b) not on a smart contract-enabled chain have a market capitalization of $1.402M, and $332M excluding
Bitcoin

Excluding ETH which is the base token for Uniswap
UTether is available on 8 different blockchains as of today
12Such as Coingate, Bitpay and similar



5.1 Causally consistent views

One of the first problems found when attempting to increase the number of covered blockchains,
is the linear increase in computation requirements and the worsening impact from reorganiza-
tions of underlying blockchains.

If we assume a simplified reorganization model for a single blockchain under which the
chances for a block to eventually be substituted is p”, where p is a constant and h is the depth of
the block, it becomes clear that the combined chances p’ that on at least one blockchain, a block

with depth h will be substituted due to a reorganisations, approximates to 1 as the number of
blockchains covered, n, increases.

plzl—(l_ph)n

This means that as more and more blockchains are added to be used on the consensus
layer, the confirmation time apps will need to wait for will increase. Regarding the increase in
computation resources, such as network bandwidth, CPU or memory, these will presumably
increase when the amount of data to be processed increases. The problem presents such that if
each single machine running as a node is forced to process everything, it will reach a point at
which most conventional machines will not be able to run as a node, which will eventually lead
to increased centralization. [25].

Our solution: relax the uniform view of the consensus layer into many different but causally
consistent views, one per each covered blockchain, and reuse computations in a secure manner.
The idea is, instead of enforcing every Coinweb client to hear and react to every block on every
blockchain as soon as they are found, to introduce some artificial delay, such that when a new
block is found on some specific blockchain, i.e Bitcoin, some Coinweb clients will immediately

pick it up and start processing it, but most Coinweb clients will instead wait a short time before
accepting it.
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Figure 2: Inter-shard visibility

More specifically, we can define a directed, weighted graph wherein each vertex would rep-
resent a blockchain and each weight would represent a delay. Each Coinweb client may pick



an arbitrary vertex from this graph on which to focus its attention; every time the blockchain
related to this vertex yields a block, the client will immediately process it, but if some other
blockchain yields another block, it will wait for d confirmations!'? before beginning to process
it, where d is the weighted distance between the graph vertex representing the blockchain that
produced the block, and representing the blockchain the Coinweb client is focused on'“.

A

Figure 3: Example delay graph between blockchains
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If we design such a graph to be sparse limiting the maximum number of vertices each vertex
can be connected to a constant g, and the set the minimum edge weight to d, we can see, under
the usual assumptions and the proper delay values, that the reorganization instability issues
disappear, as the reorganization probability p’ at vertex A remains constant no matter the size

of the graph:

13Understanding a confirmation as the number of blocks minted on top of a given block, regardless of the
blockchain having finality or not.

14The reader might assume that a consistent definition of "d confirmations” requires anchors to create a deter-
ministic ordering between the blockchains, but also a header timestamp in a block can be used for this purpose as
long as keeping the timestamp drift within some bounds is part of the consensus protocol for the blockchain
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5.2 Reusing computation

Once the reorganization instability issue has been addressed, it’s time to focus attention on the
issue of computation resources. The key idea is to notice that, given there is at least one client
focused on each blockchain and because of the mentioned delay, by the time a client focused on
a blockchain A needs to react to a block w from another blockchain W, clients focused on some
blockchain B, whose vertex is adjacent to 1W’s vertex on the delay graph, have already reacted to
block w. This means that if we can compute the reaction a client focused on A will have to w,
based on the combination of these reactions, then we will be able to reuse most computations.

{

N -

(@

Blockchain A Blockchain B Biockchain G

Figure 5: Computation sharing

5.3 Sharding

The global Coinweb state needs to represent information related to every covered blockchain,
thus this state will need to be split into different shards in such a way that each Coinweb
client will maintain a partial view; otherwise the requirements imposed by the size of this state
would eventually limit the amount of blockchains Coinweb is able to cover. As the amount of
shards required depends on the number of blockchains covered, and as we can assume that the
information extracted from one blockchain is more related to itself than to information from
another blockchain, a natural way of doing this is to associate a blockchain with a shard. This
way, we will have a shard for information extracted from the Bitcoin blockchain, one for the
information extracted from the Litecoin blockchain, and so on. For ease, each of these will be
called shards, the level-2 blockchains (or 12-), and named as 12-bitcoin, 12-litecoin, etc. Two
shards (i.e 12-blockchains) will be described as being adjacent, if their related blockchains are
adjacent to each other on the delay graph.

Taking these points into consideration, the following schema for state composition and
computation reuse can be sketched:

* We associate each shard to a covered blockchain, and state that this blockchain is the

shard’s underlying blockchain.

* Every time a new block from the underlying blockchain is found, we compute a new state
for the shard; this way each block can be associated to a shard state. We can state that it
is the shard at height % to that shard state computed after the block at height A.

11



* To compute the next shard state, we will use: its previous state, the new block from the
underlying chain, and the set of the shard states from the adjacent shards that has not
been used previously and have at least delay4B confirmations. Where A is the shard
being computed’s underlying blockchain, B is an adjacent shard’s underlying blockchain,
and delaya B is the weight of the edge from vertex B to A on the delay graph.

prevap(i) = max {tstmp(blockg(j)) < tstmp(blockA(i))}

prevap(i)

unclesa(i) = U U shardp (j - delayAB)

Bldelayap<oco j=prevap(i—1)

shard(t) = eval (shardA (t - 1), block 4 (i), unclesA(t)>

This way, the required computational resources (i.e, network, CPU, memory) a Coinweb
client requires could be kept constant regardless of the number of covered blockchains; However,
as observant readers will have noticed, naive sharding in this way requires trust between the
clients.For a relatively small amount of covered blockchains this would not be a problem, as
each actor involved could simply run a small cluster of Coinweb clients in such a way that each
of these clients would trust each other, but distrust any other Coinweb client outside of this
cluster. But in order to scale to a large number of blockchains, this issue must be solved, as
asking every actor to run a large computing cluster would become an unrealistic assumption.

5.4 Reusing computation between untrusted clients

As a way to prove state either for PoW blockchains or PoS blockchains already exists[15], we
need only prove that the computation based on their state was done correctly. Given that this
computation is deterministic, we can use a referee check of computation [4][13]: In order to
verify a given foreign shard state is correct, the client would connect to multiple other peers and
query for the hash representing the root of computation. If the client finds any discrepancy, it
will initiate the referee check. As long as one single peer is honest, the client will be able to
identify which it is.

The biggest risk with referee check of computations protocols is not finding an honest referee
(in our case, a peer computing an adjacent shard). This could occur if, after a Sybil attack, the
number of malicious peers is so high that it becomes difficult to locate an honest peer. To protect
against this attack, we would require a percentage of the peers a Coinweb client connects to,
to sign their messages with a cryptographic key associated with an old-enough proof of XCO
burn; this way, spawning many malicious peers—each one with a different proof of burn—
would become economically unfeasible. On top of that, because signed messages would become
a cryptographic proof that a client lied, using a gossip protocol would make it possible to keep

12
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a distributed blacklist of malicious peers; These malicious peers would be ignored unless they
change their identity (based on their cryptographic public key), but doing so would require
paying the proof of burn again and waiting for enough time to elapse that the proof becomes
old.

Because a shard will only consume the state of an adjacent shard after a delay (measured
in number of block confirmations over the adjacent shard), it is possible to verify a shard state
before it needs to be to consumed, such that the overall delay will not suffer—even if the referee
check of computation protocol is time-consuming. For example, if we think of an adjacent
shard over blockchain A with a delay of 2-d, then when a new block ¢ is found on A, we will
be verifying the shard’s state corresponding to block ¢ — d while consuming the shard’s state
corresponding to block ¢t — 2-d. To further reduce the impact the check protocol could take 13,
we can focus only on shard states over blocks with a height multiple of half the delay (in our
example case this would be d), as verifying one implies verifying the ones before it.

5.5 Strong semantic coupling, loose timely coupling

Thus far, blockchains have been argued over as if they were systems whose behaviour could be
modelled and approximated; but when long term scenarios come to play, the reality becomes
more complex. We can think of extremely long, unexpected reorganizations due to bugs as
happened with Bitcoin ¢ and again '7; or even due to political decisions as happened during
Ethereum’s DAO incident 8. We can recall blockchains that forked into two or more branches
where, from the old code point of view, neither was the original. And we can think of many

15Though each step of the protocol itself is relatively simple, because it is interactive and there are many peers
could be involved, it becomes potentially time consuming
16https://news.bitcoin.com/bitcoin-history-part-10-the-184-billion-btc-bug
https://siliconangle.com/2013/03/11/breaking-disagreement-between-bitcoin-clients-generates-fork/
Bhttps://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-investor-funds

13



promising blockchain projects that died after being abandoned, compromised, or attacked 1°.

If Coinweb is determined to cover as many blockchains as possible, some of those covered
blockchains can be expected to became unstable or even suddenly die. An obvious solution
would be to curate a list of trusted stable blockchain projects, and to focus only on those—but
that would mean missing the opportunity to cover interesting new experimental blockchains.
Instead, we approach this challenge by taking the time-decoupling solution to the extreme:

Consider one of the worst case scenarios: on blockchain A, a critical vulnerability is un-
covered and the project gets delisted and abandoned. Mining on blockchain A stops being
profitable and, after a sharp drop of hash power, what would become A’s last block is minted.
Worse still, A dying would mean the eventual consistency of its state over which Coinweb’s
consensus is built will never become consistent. Coinweb’s shard computed over A will then
become inconsistent, followed by the adjacent shards, then the shards adjacent to those adjacent,
and so on. In a matter of time, the whole Coinweb system will become inconsistent. In such an
extreme scenario, expect the community to take aggressive action to save the project. However,
once they do the harm suffered may be too great. The question becomes: how long does the
community require to solve a situation like this? We've learned from previous experience that
a proper reaction could take a matter of days or even longer, but for the sake of argument if
we could predict A’s fate with some weeks of advance notice then the solution would be rather
simple: the Coinweb community could gather and, after some voting mechanism (i.e proof of
stake, proof of burn), decide to stop covering A before it dies. User funds held on A shard
would be lost, but the rest of the system would escape mostly unscathed.

The idea to make Coinweb robust against such scenarios is to develop an alternative, off-chain
communication mechanism between shards, based on a combination of market mechanisms and
the original Inchain communication. With that alternative mechanism, we expect to be able to
extend delay from the magnitude order of minutes, to the magnitude order of weeks, without
slowing down transactions or smart contracts interacting between the shards. This will be
detailed further in the next subsection.

5.6 Information markets

We call an off-chain communication mechanism between shards an ’information market’.

An information market provides a service to an actor wherein a guarantee for information,
including tokens, can be provided. This guarantee is manifested as a stake or similar, and remains
in effect until the information is available. Requiring the use of an information market ensures
a financial penalty can be levied against it for not providing correct service.

An information market focused on token transfers could be created by positioning token
pools on different shards and releasing tokens on shard A upon deposit on shard B. This can
be made trustless, since the transaction that deposits tokens on shard B is eventually visible by
shard A. Smart contracts on shard A can penalise a market maker that did not release tokens,
and also release the tokens back to the user. Similar action can be taken by a smart contract on
shard B by observing whether tokens have been released on shard A.

For computations, the situation is a bit more complex, but a similar mechanism can be
constructed. A smart contract on shard A can ask an information market maker to do a com-

Bhttps://www.coinopsy.com/dead-coins/abandoned/
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Figure 7: Information market maker example: Alice sends XCO stored on blockchain A, to
Bob on blockchain B. To expedite the process and avoid the long delay between blockchains A
and B, Alice uses an information market maker.
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Figure 8: Same case as example 7, but on this case the information market maker, either
intentionally or accidentally, misbehaves. We can see that regardless of this, Bob will get the
same funds, though later than expected.

putation on shard B. This, effectively, is similar to seeing into the future from the point of view
of shard A. The information market maker would give the smart contract the results of the
computation, and this result would be associated with a financial penalty so that if it ends up
being wrong, there will be a payout.

As only one honest actor is required to reveal a bad actor, and a bad actor is neverthe-
less revealed after an information propagation delay between the shards, there exist plenty of
opportunities to construct mechanisms and incentives for honest actors to alert the contracts.

This off-chain communication mechanism between two shards separated by a long delay is
based on two liquidity pools, one on each shard, controlled by smart contracts, and an informa-
tion market maker feeding information to each liquidity pool. When a user (or smart-contract)
on shard A want to send funds (or a message) to a user on shard B:

- it will instead send the message or funds directly to the A side of the liquidity pool;

- The contract on A’s side will send the funds (or message) to B’s side. This action will take
some time;

- Meanwhile, a forwarder will send a message to B’s side to immediately release the funds
(or message), minus an applicable fee.

- B’s side will immediately release the funds from its own pool, as it has not yet received the
funds from A’s side.

- Eventually, B’s side will receive the funds from A’s side, compensating back the balance.

Notice that even in the case that the information market maker misbehaves, the receiver
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is guaranteed to eventually get the funds, as the B smart contract will automatically send the
fund once it is received, if it has not done it before, plus a potential compensation; therefore
a malicious actor could, at most, delay transfers. On the other hand, any misbehavior from
information market makers would be detected and stake-penalized. As the liquidity pool risks
losing its funds in case some of the underlying blockchain collapses, a charged fee is to be
expected.

6 Coinweb’s computation model

Having established a way to intercommunicate between a large number of blockchains, it be-
comes increasingly interesting to develop a computation model able to support all communi-
cation and smart contract opportunities that will arise, while keeping low fees and realistic
requirements for those machines running as clients. Most computation models inspired by that
of Ethereum are conceptually sequential, in the sense that transaction execution order mat-
ters. Even though conceptually sequential doesn’t imply an actual sequential implementation,
developing a convenient parallel implementation has so far proven to be an exceptionally chal-
lenging problem [19]. Instead, we have chosen to aim for an intrinsically parallel model on
which, within a block, it would not be possible for smart contracts to be influenced by the order
the transactions were issued. In this way, implementation would easily port to parallel frame-
works such Map-Reduce or GPU and this, in addition, would remove or reduce some malicious
incentives based on transaction reordering such as [7] or [5].

Following a BSP model [6], we split a transaction’s computations from a transaction’s ac-
tions, in such a way that each computation can run isolated from others (hence trivial to paral-
lelize [map]), and each action will be a simple, reduce-like operation. The challenge with this
approach lies on allowing smart contracts to interact with each other, and establishing how to
prevent a single computation becoming the bottleneck of the whole map-reduce operation. Our
solution is simple, but with deep implications: Allow smart contracts to issue their own trans-
actions as if they were external actors. On the following subsections, we develop a computation
model based on these ideas:

* External and internal actors (i.e smart contracts) are treated the same way. That is, the
only way smart contracts can modify the state of the system is issuing transactions, and
these transactions are processed the same way as transactions from external actors.

¢ Smart contracts can not observe the order of those transactions that are issued at the
same batch.

* Transactions embedded at the same block belong to the same batch. A transaction issued
by a smart contract triggered by a batch belongs to the next batch. Batches are executed
sequentially, one after another. There’s a constant number of batches per block; the
batch after a block’s last batch, is the next block’s first batch. This means that a chain of
reactions between smart contracts may span several blocks.
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6.1 Claims

Because private keys used inside smart contracts can not be hidden, we generalize the concept of
signature to that of claim. A claim is a combination of a unique nonce; a message, called the
claim-payload; and an actor, such that it can proved the message at the given nonce was issued
by said actor. In the case of external actors, a claim is proved by a cryptographic signature, in
case the sender is a smart contract (i.e an internal actor), the claim is proved by keeping track
of which messages were issued by which smart contract.

In Coinweb, when an actor creates a claim it pays a fee in the form of XCO. The claim then
becomes visible to any actor until, at any later time in a future transaction, the actor decides to
delete it, partially recovering the XCO paid. Only the actor that originally created the claim,
whom will be called the claim owner, is allowed to delete it. In this way, claims on Coinweb

fulfill a similar role as UTXOs do for Bitcoin-like blockchains 20.

6.2 Smart contracts

On Coinweb, smart contracts are pure functions—stateless functions without side effects which
can be modelled as mathematical applications—taking as input a payload, and returning as
output either a Coinweb transaction or an error. They are encoded as a combination of a
piece of web-assembly code, plus a set of parameters, represented as a raw bytestring. They are
referenced either explicitly (i.e, as the web-assembly code and parameter itself), as the hash of
their explicit representation, or as a reference to a previous execution. Two smart contracts are
considered to be the same smart contract if they can be represented by the same hash.

Coinweb smart contracts are considered to be system actors, and the system keeps track of
any claim made by them.

As smart contracts are stateless, they are neither created nor destroyed, in some way you can
consider that every possible smart contract already exists, waiting to be called for the first time.

6.3 Actions and transactions

On Coinweb, actions are the set of primitives that enable smart contracts and users to interact
with each other. Each type of action is associated with a fee (issued in XCO), which would
be negative for delete — claim actions, and positive for any other type of action. Actions are
embedded in Coinweb transactions. The combination of the transaction ID (txid) plus the
action position within its transaction will become the action-id. Because it is not possible for
two different transactions to have the same txid, no two actions will share the same action-id.
Actions are not issued on their own, but as a part of a transaction which, on Coinweb, is no
more than a set of actions, an initial XCO balance, and a reference to how it was issued. They are
termed in this way because when an action within a transaction fails, it propagates the failure
to every other action from the same transaction, resembling some properties of the concept
of a transaction in a database or in other cryptocurrencies. However, Coinweb transaction are
not “transactions” in the formal sense, as they are neither atomic (when they do fail, they do
not rollback any state change they might have already generated) nor isolated (two different

20For a brief introduction to the UTXO concept: https://river.com/learn/terms/u/unspent-transaction-output-
utxo
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Figure 9: Parallel execution of smart contracts

actions being executed can sometimes influence each other even when they belong to different,
simultaneously executed, transactions).

Transactions parsed from the underlying blockchain have an initial balance of 0 XCO, and
are considered to be issued or owned by the external actor who signed them; for any other
transaction, the initial balance and ownership depends on the action after which they were
created.

The different types of actions are:

* create-claim: takes a claim-payload as argument and stores it as a claim made by the
issuer of the transaction within which this action is contained. The fee for this action
is determined by the user, but there will be a minimum fee value determined by the
governance parameters based on the claim-payload size.

* delete-claim: takes a reference to a claim and deletes it. The fee for this action is deter-
mined by the governance parameters based on the claim-payload size and age, minus the
original fee paid to store the claim. It is expected for this fee to be negative.

* lookup-claim: takes a query as argument and returns its result. The fee will be deter-
mined by the governance parameters based on the query complexity.

* send-message: generates a payload and uses it as an input for a smart contract, transferring
to it both XCO and gas. This action takes as argument the amount of XCO to transfer, the
amount of XCO to use as gas, the target smart contract, and an aggregation-expression.
Aggregation-expressions are explained on subsection 6.5 and define how to compute the
payload based on the result from lookup-claim actions within the same transaction to
which the actions belong, and aggregated values from other send-message payloads sent
by the same issuer at the same execution stage step. The resulting transaction of the
smart contract invocation establishes the smart contract as owner, and transfers the field
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amount as the initial balance. The action fee would total the sum of the transferred XCO
amount, plus the gas XCO amount, plus a fee determined by the governance parameters
based on the aggregation-expression complexity.

* send-transaction: similar to ”"send-message”, but targeting a shard as destination rather
than a local smart contract. This action takes as argument the amount of XCO to transfer,
the target shard, and an aggregation-expression. The result of the aggregation-expression
is a new transaction that will be processed on the target shard. The issuer of the new
transaction is considered to be the issuer of the previous transaction containing the send-
transaction action. The initial balance of the new transaction is the same as the transfer
field. The action fee would total the sum of the the transferred XCO amount, plus a fee
determined by the governance parameters based on the aggregation-expression complexity
and the target shard.

6.4 The execution pipeline

On Coinweb, actions are executed in batches following a static pipeline; in turn, each stage
of this pipeline is executed following a parallel map-reduce process. When an action passes
through one of these stages it will either succeed or fail; if it succeeds, it passes to the next
stage. If it fails, it is discharged from the pipeline.

TF

:

Other
)

XBF

CL

c2

SCF

CC

EA

N+G

Delay Queue

Figure 10: Execution pipeline

The different stages are:
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* Transaction Fetch (TF): receives transactions embedded from the underlying blockchain
and transactions sent from the adjacent shards, and unpacks them as actions.

XCO Balance Filter (XBF): computes transactions’ required fees as the sum of the fee of
each of their actions, and removes all actions belonging to transactions with a fee greater
than their balance.

Claim Lookup (CL): executes the lookup-claim action queries, retaining the results for
later stages.

Claim Delete (CD): executes the delete-claim actions. For each of these actions,the
referenced claim is marked as deleted only if the action issuer and the claim owner were
the same; otherwise, or if the referenced claim did not exist, the delete-claim action will
have no effect.

Spent Clash Filter (SCF): removes all actions that belong to transactions containing a
delete-claim referencing a claim that either didn’t exist, didn’t belong to the issuer, was
referenced by another delete-claim on the pipeline from the same issuer, or was already
marked as deleted. The role of this stage is to prevent double-spends, but if there are two
competing transactions for the same claim, there will be no winner and both will fail.
Furthermore, the claim will remain deleted (assuming the action issuer was the owner)
and effectively burnt. This disincentivises double-spend attempts at the application level.

* Claim Create (CC): adds entries to the claim DB.

* Expression Aggregation (EA): carries out several reduce rounds until every aggregation
is done. Because the number of reduce rounds is equal to the maximum height of these
expressions, there is a limit on this height set as governance parameters.

* New Transaction Generation (NTG): for send-message actions, now that the payload is
computed, we load the smart contract WebAssembly code and execute them together on
their own isolated VM. Note that there would be 1 VM spawned for each send-message
action, even if all send-message actions target the same smart contract. The result of
the smart contract is parsed and interpreted as a new transaction, then is fed back into
the pipeline. The maximum memory size and number of steps the VM would be able to
use would be limited, based on the governance parameters and the gas the send-message
action declared. If the result could not be parsed as a transaction, the maximum memory
or steps was reached, or an exception halted the result, then the action will be considered
to have failed and the result will be discharged. For send-transaction actions, this stage
is very similar, but its VM invocation is omitted and the output will be directly parsed
from the input without any intermediate computation.

When a new block on the shard’s underlying blockchain is found:

* The delay queue is popped, any transaction that has been waiting long enough is sent to
the target shard where it will eventually be processed.

21



* The TF stage is called. It parses the new block, extracting any embedded Coinweb trans-
action.

* We combine into a single batch, all these new transactions plus the transactions issued on
the previous NTG-stage execution (made on the previous block) and transactions coming
from any of the adjacent shards.

* Starting with this transaction batch as an input, we execute the CL, CD, SCF, CC, EA,
and NTG stages in a row, pipelining the result from one stage into the next. The result
from the last stage, NTG, will be a new set of transactions. Those targeting a different
shard will be sent to the delay queue, those targeting back the same shard will be grouped
together to form the next batch.

* The next batch will be sent back to the CD, SCF, CC, EA and NTG stages to be executed
the same way as its predecessor, creating a newer batch. This way, the stages will be
iterated N times, where N is a governance parameter.

e After the N loops, the system saves the last result from the NTG execution, and halts
waiting for a new block from the underlaying blockchain.

6.5 Aggregation-expressions

Because several messages can be sent simultaneously to a smart contract, but for each of these
messages a different isolated VM is spawned, a mechanism to enhance the information a VM
can observe is needed, so it not only sees a single message, but also the relevant information
related to the combination of every message sent as a whole. Think, for example, of an auction
smart contract that needs to tell apart the biggest bid from any other message, or a token smart
contract that needs to compose a transaction based on the combination of several messages, or
a lending smart contract that needs to know if it has enough funds to lend to every message
being sent. The goal of the aggregation-expressions is to cover this need.

Aggregation-expressions are very similar to the concept of windows functions in query lan-
guages such SQL. At stage EA, every aggregation-expression from the same issuer (either exter-
nal actor or smart contract) defines a context or window on which to run the collective operation
defined by the aggregation-expressions.

Aggregation-expressions are modelled as Abstract Syntax Trees (ASTs), wherein each in-
ternal branch node represents an operation primitive (i.e mazx, first, average) and each leaf
represents either a literal, or a reference to a claim-lookup action from the same transaction.
Aggregation-expressions are computed over a given context recursively:

* Different aggregation-expressions are regrouped into several sub-contexts, so that in every
sub-context each aggregation-expression will have the same root node.

* For cvery sub-context:

— If the root node is a leaf node:

* If it is a reference to a claim-lookup, return the claim content; otherwise, if it
is a literal, return the value of the literal
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— Otherwise, if it is a branch node:

ecursively execute every child as an aggregation-expression.
* R \ t ry child regation ression

* Over the set of returned values, run the collective operation represented by the
branch-node.

¢ Return the union of the value sets returned from each sub-context.

Following the above pattern, not only can a set of aggregation-expressions be computed in
parallel as map-reduce iterations, but the number of these iterations can be estimated based on
the number of iterations it will take to compute the most complex of these expressions. This
complexity estimation, measured as the number of map-reduce iterations, is what will be called
the expression height. Any transaction containing an aggregation-expression with a higher
height than allowed by the governance parameters will be considered invalid.

Primitives will be made out of collective operations that have the following properties:

* Their height can be statically estimated.

* The amount of computation or data to transfer grows log-linear with the size of the set
over which they are run.

* The output set size is the same as the input set size.

For example a primitive to concatenate, where every returned result will be the concatenation of
every input, would not be allowed, because the amount of data to transfer will grow quadratically
— but a parameterized primitive concatenate,,, where n is a value known at the time the
transaction was issued, and that for every input it will return the concatenation over a fixed
window of size n around it, would be allowed. To keep the overall computation agnostic to the
order in which the expression was issued, any non-commutative primitive, such as first, last,
atPosition,, or concatenate,, will only be allowed after an explicit sort operation.

Note that because the final goal for an aggregation expression is to produce a set of structured
data to work as smart contract input or to represent a transaction to be issued, most of these
primitives will be scalar functions (height 0); either commonly-used math functions (scalar +,
scalar and, round, etc), functions to construct or deconstruct hierarchical data (i.e json, xml,
dictionaries, trees, etc) or functions to work as flow control (i.e i f ThenElse, coalesce, nullif,
etc).

6.6 Overcoming computation limits

Similar to other cryptocurrencies, fees in the native currency, XCO, will be used as an anti-spam
mechanism. Specifically in the case of Coinweb, fees will control how many actions a transaction
can contain, and how complex these actions can be. So, in principle, as long as one can afford
it, a computation could be as complex as required. Considering a practical implementation, if
this would be allowed directly, a single computation could become a bottleneck, holding up the
whole pipeline execution. This is why some limits are fixed no matter the size of the fee the
issuer is willing to pay. For aggregation-expression this limit is a maximum height. For smart
contract VM invocations this limit is a maximum number of steps to be run, and the maximum

23



of memory to be used. So what happens when some computation does not fit within these
limits?

The observant reader might have already recognised that these constraints are not too tight
if we take into consideration that a smart contract can issue a transaction containing messages
back to itself, or that an aggregation-expression could return a transaction containing a send-
transaction with an aggregation-expression based on the previous aggregation-expression. This
means that if a computation is too complex to be computed within a batch, it could be spanned
into several computations in order to be gradually computed. For example, if a computation
were so big that it would require 10,000 steps of the wasm machine, but the maximum allowed
is 6,000: then the smart contract could execute 5,000 steps of the computation, use another
1000 steps to serialise a transaction with a message back to itself containing the state of the
computation, and finish. Then, on the next batch, it will receive the message, deserialise it, and
continue with the remaining 5000 steps.

Because a smart contract can continue sending messages back to itself, then, considering
the most extreme case, there is no reason why a single smart contract computation could not
span into several blocks. This opens an interesting possibility: As long as a smart contracts can
continue earning XCO, it could use the accumulated XCO to keep sending messages back to itself
indefinitely in what would become a never-ending execution, effectively becoming a daemon.
Furthermore, a smart contract daemon could be used to register callbacks to be triggered to
other smart contracts after specific events, enabling reactive smart contract execution.

sectionConclusion

We introduced and demonstrated the benefits that the Inchain architecture could bring to
the crypto space by interconnecting different self-sovereign blockchains without compromising
their underlying consensus. We also introduced Coinweb, a proposed implementation of In-
chain architecture. We showed that Coinweb, as a multichain Inchain implementation, would
significantly increase the solution space for dApps compared to what is currently available.
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7 Appendices

7.1 Space analogy

The multi-chain communication system in Coinweb can be explained by way of a universe. In
this universe, many blockchains can be observed as stars. Some stars shine brighter than others,
and floating around each of the stars are space rocks and planets attracted to the gravitational
field of the stars. The rocks and planets can be viewed as transactions and smart contracts.

In this universe, the laws of relativity holds between the solar systems, and the speed of
light is constant in all referrence frames.

In our universe, one blockchain is called Alpha Centauri A, or A. Another blockchain is
called Alpha Centauri B, or B. A third blockchain is called Proxima Centauri, or C.

The different planets and stars can see each other, but they cannot easily communicate?!.
Stars are typically five light years apart, so a smart contract close to one star would observe
information from another star that is 5 years old. Sending a message to a smart contract at
another star would take 5 years.

Some stars are close to each other, such as Alpha Centauri A and B. The designers of this
universe might see that these stars’ stability and security are inherently linked, such as the case
might be if a smaller blockchain makes use of merge mining to make its security depend on
another blockchain. Communication between these stars is quick.

Unbeknownst to the smart contracts themselves, the stars have been deliberately placed far
apart in the universe. An exploding star destroys everything around it, and the blockchain it
inhabits. Stars that are close to each other would consume each other in a disastrous supernova,
or the creation of a black hole. On the positive side, this universe is inhabited by, from the point
of view of the smart contracts, magical creatures called external actors. These external actors
are not bound by the theory of relativity, and can see actions as they happen across the whole
universe.

A smart contract can ask these external actors for help. One external actor that is particularly
popular is a fortune teller who, for the sum of just one GOAT, can tell a smart contract what
is happening at a nearby star. Smart contracts are, by nature, suspicious of all external actors,
including fortune tellers, and do not trust them to tell the truth. They are not willing to sacrifice
1 GOAT for a fortune teller that could potentially lie to them. Smart contracts, on the other

2The stars and planets related to each other is treated as a point in space in this case, as each blockchain has
a defined order of events. Thus while relativity of simultaneity holds between stars, the order of events within a
solar system is the same for all reference frames
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hand, can be trusted to always do as they are programmed. They are bound by laws of nature
and the computer instructions they are made of.
The fortune teller and the smart contract make an agreement:

The smart contract agrees to pay 1 GOAT to the fortune teller,

The fortune teller gives the smart contract 2 GOLD (the equivalent to 10,000 GOATSs or
more), as well as the results of the observations of the other star,

If the fortune teller lies, the smart contract will be able to keep 2 GOLD.

If the fortune teller is honest, their 2 GOLD will be returned.

The smart contract simultaneously announces to the world that if anyone has reason to
believe that the fortune teller is not being truthful, they will receive 1 GOLD in compensation.
However, any public accuser must temporarily hand over 2 GOLD, which they also will get back
if the accusation turns out to be true.

Now if just one single truthful fortune teller exists in the system, the correctly observed
result will be given to the smart contract, or the observation will fail (more complex approaches
exist that will always succeed—as in Coinweb). In its further calculations, the smart contract
now uses the fortune teller’s results as if it was true. The smart contract might reinsure its own
results in case it was wrong by using some of its 2 GOLD, or a client to the smart contract can
ask a fortune teller to insure it by paying, for example, 1 GOAT. When light from the close star
reaches the smart contract, after almost 5 years, the 2 GOLD is released to the fortune teller if
the prediction was truthful.

27



" COINWEB”

{7 coinweb.io <4 https://t.me/coinweb YW @coinwebofficial

Coinweb Whitepaper - July 2021 © Coinweb



