
Whitepaper
Bismuth Crypto-Currency

Written by the Bismuth Core Dev Team
Version 1.2

Date: August 13, 2019

1

Contents
Abstract . 3
Introduction . 3
Bismuth Features . 10

Use Cases . 10
Coin Supply and Reward Model . 12
Cryptography . 13
Multiple Address Schemes . 14
Mining Algorithm . 15
Chain Security . 19
Tail Removal Block Validation . 20
Operation and Data Field . 21
Private Contracts . 23
Hypernodes and Sidechain . 24
Hyperblock Compression . 28
Penalty System . 29
Mirror Blocks . 29
Testnet . 29
Regnet . 29
Education and Research . 30

Future Prospectives . 31
Summary . 31
Disclaimer . 32

2

Abstract
This document contains the whitepaper of the Bismuth crypto-currency. The
whitepaper begins with a presentation of the Bismuth philosophy and a de-
scription of the three pillars it stands on followed by a presentation of some
of the core features, which are: Plugins, Use Cases, Coin Supply and Reward
Model, Cryptography, Mining Algorithm, Tail Removal Block Validation, Opera-
tion and Data Fields, Private Contracts, Hypernodes and Sidechain, Testnet and
Regnet, Education and Research.

Introduction
The crypto-currency Bismuth’s initial goal was to build a chain that was as sim-
ple as possible, from a brand new fresh python codebase. It started as a per-
sonal project by one developer, to learn about the technology, but soon evolved
into a feature packed crypto-currency and platform with multiple developers,
technical support persons, pool operators, exchanges and social media influ-
encers involved.

Bismuth Pillars
Bismuth stands on three pillars that differentiate it fromother crypto-currencies.

3

1. The Real World Principle
Some chains live in an idealist world where everything can be made perfect,
where code fixes everything and users are experts able to understand complex
algorithms, their bug free implementation, compile from source, then make no
error using the tool. The solutions designed in that spirit are bound to fail be-
cause they ignore the real world, real users, and use case of the tool. The inter-
faces with the real world (users, oracles, network) are not perfect, and Bismuth
has to account for that.
There is no need to design a super complex algorithm which ensures a consen-
sus to reach immutability when what it secures is not fail free. The complexity
of the code should reflect the real world use case. As an example, you do not
need 12 supersonic reactors to run your car. Your usual engine is enough and
gives enough guarantee for everyday use. As an example, Bismuth does not use
transaction hashes. The block hash verifies all the transactions contained in it
using the following code:

block_hash = hashlib.sha224((str(transaction_list_converted) +
db_block_hash_prev).encode("utf-8")).hexdigest()

That is in the Bismuth spirit, simple, easy to understand, yet effective and con-
sidered good enough.
If the goal is to achieve the mass adoption of cryptocurrencies, then we need to
move away from them being seen as something only for developers and experts
in cryptography. The way we do this is by making them simple to understand
and not over engineering them. There is still work to do in that respect, but this
is the way Bismuth moves on: not trying to design a perfect abstract system,
then findmatching use cases, but starting from real world use cases instead and
searching for the simplest possible way to achieve it - with sufficient guarantees.

2. Need to store
Because of the real world principle, some data needs to be stored in the chain.
Users do not need to use tricks to do that like they do with BTC or ETH. Some
things just HAVE to be stored on chain, let’s not try to hide that, and ease the
user’s job. Bismuth supports by default two abstract fields - operation and data
- users can leverage to build any protocol, however complex, on top, while keep-
ing a good level of performance.
However, storing everything on chain because, we have a chain, is kind of the
hammer problem: if all you have is a hammer, you see every problem as a nail.
That is why some crypto-currencies are so focused on scalability issues: they
want to store everything on chain, and it is just too much. Bismuth’s philosophy
is to store only what needs to be stored on the main chain, and no more. Still,
following the real world principle, on chain storage is not strongly discouraged.

4

Scalability is an application design issue. By ensuring you store only what needs
to be, you avoid - from the start - many scalability and long term issues. Why
store full documents for proof when you can store only their hash? Store proofs
instead of data. Use checkpoints, signatures, fingerprints.
Bismuth also aims to provide a practical framework to store more aside the
chain, while still benefiting from the chain safety (See Hypernodes-like side
chains, hyperlane).

3. Clear line of trust
Crypto-currencies often define themselves as ”trustless”. This is ignoring the
real world principle.
What is stored in a chain is not necessarily ”true”. It is just supposed to be
immutable once stored, and requires some hidden trust anyway: in the code, in
the bootstrapped data, in the underlying algorithm, in majority of other peers,
in service providers. On-chain contracts are not magical, they are not perfect.
They can have bugs, the virtual machine (VM) can change, they rely on oracles,
you still have to trust but you do not always know what or who you trust.
Bismuth does not try to hide the fact that you sometimes have to trust, and
we try to make that clear. When you use a private bis contract like Zircodice or
Dragginator for instance, you trust its operator. You still can have a history of
the transactions and verify that the operator did what he was supposed to.
The Bismuth execution model and abstract protocols also go in that direction.
Not only you know what you have to trust, but you can choose who you trust. In
the case of a protocol, you can freely choose the implementation you trust the
more, the certifier that suits you, and so on. It is not some magical immutable
contract stored on chain, with possible bugs, proxies, backdoors and no way of
fixing when it goes wrong.
In other words ”clear line of trust” means that when you have to trust something
or someone, you know what/who you have to trust. Bismuth is not presented
as trustless, whereas you implicitly trust several layers and people.

Bismuth Value proposal
The Bismuth value proposition can be summarized as follows:

• Lightweight: The node is lightweight and does not require a powerful CPU
and a lot of RAM.

• Perfect fit for developers, scholars and academics.

• The codebase is quick to handle and develop upon.

• Allows for fast prototyping of use cases.

5

• Easy to tweak and experiment on

• Multiple access layers and clients API in several languages are available.

Bismuth for developers
Along its development, Bismuth always tries to:

• be simple: does not copy every complex feature of other chains, but strip
down and simplify to the core so it is understandable.

• be innovative: the Bismuth protocol belongs to a core team, which allows
for great flexibility and new features to be tested and added quickly.

• be extremely extensible and tweakable.

Bismuth is tailored for developers:

• Use of python means it is largely accessible to an ever growing base of
developers.

• Python is currently the language of choice for universities, students, aca-
demics, data and machine learning scientists.

• Python does not need time consuming compilation steps. Tweak and test.

• Bismuth allows for interaction at many levels of its infrastructure, from
direct DB access - pure SQL - to API clients in several languages.

• Bismuth node comes with hooks and filters, allowing for easy to write plu-
gins, in pure python code - no new language to learn.

• Bismuth Wallet also comes with pluggable crystals, so dApps can be seem-
lessly integrated in the wallet.

• Bismuth Abstract transaction model and protocols allow for virtually any
application to be run on top of Bismuth.

An example of feedback from a dev to the core team: With Python’s simplicity,
with a few hours you can get some poc apps done. The main hassle trying to
bring talent to blockchain is all the research that is needed. Most of the time
when we were going to do afternoon workshops with eth-solidity it just got too
complex.
Hack with Bis repository is the place to start to learn the basis and get started.
Bismuth core concepts for developers, see: This GitHub Link

6

https://github.com/bismuthfoundation/Hack-with-BIS/tree/master/01-Concepts

Bismuth Execution Model
The current Bismuth model is very different from the Ethereum one. You simply
can not transpose what is done with smart contracts and solidity. Bismuth does
not need public ”smart” contracts at themoment, and does not have a VMwhere
every node executes the same code.
Although it could be seen as a limitation, it is in fact quite a strength, and some
exploits that have taken place with ETH smart contracts could not have been
successful on a Bismuth like architecture.

”Smart” contracts vs ”smart” protocols in a nutshell
ETH like smart contracts are written in a specific language, stored on chain, and
run IN every node. Bismuth like smart protocols are implemented ONTOP of the
Bismuth chain and only run by concerned dApps.

Ethereum

• You have to learn a new language, Solidity.

• There are some specific pitfalls (underflow, visibility, access rights).

• Flawed contract code can give an infinity of coins to a user.

• Several hacks and horror stories already in Ethereum smart contracts His-
tory.

• Smart contracts can ”own” funds

• Smart contracts live in the chain forever and can not be stopped nor up-
graded unless the author provided a kill switch.

• If there is a kill switch, the owner can get all the funds of a contract.

• Every contract invocation is processed by every single eth node in a VM -
Virtual Machine - and consumes gas.

• Contracts can not directly access outside resources.

ETH model has some strengths and some use cases that you could simply not
replicate with BIS, but BIS has other uses.

7

Bismuth

• No new language to learn. You can write contracts and protocols in almost
any language, Python being the native language.

• No more pitfalls than with your usual code.

• Contracts can not overspend.

• No VM, no ”on chain” code, no public contracts.

• Users can run private contracts.

• Owners then have full control - including fix and upgrade - over the con-
tract.

• The contract, if its inner working is published, is fully auditable and verifi-
able.

• Contract invocation is only run by the clients that have an interest in that
specific contract.

• Private contracts can do anything, including accessing outside data with-
out the need for on chain oracles.

8

Bismuth tokens
Things that are to be widely used, like tokens, are not handled via a generic VM
and user code. If a use case is wanted enough, it can be integrated in Bismuth
core. The Bismuth dev team does not have the weight of Bitcoin or ETH, and can
move forward very very fast.
That’s the case with tokens.

• native tokens.

• optimized, resource savy tokens, indexed db of tokens.

• still can be overloaded with extra features.

• code is tested, public, the same for everyone: potential bugs are identified
and can be fixed globally.

To match ETH terminology, current Bismuth tokens are partially ERC20 compli-
ant. They do not allow delegation: you can not have someone else spend your
tokens and approve. More feature packed tokens types may be added soon.
The Bismuth tokens make use of the operation and data fields for creation and
transfer. The two main operations are token:issue and token:transfer. For more
information about Bismuth tokens, see This Link

Bismuth ”Smart” protocols
Rather than having immutable on chain code, that has all power on the funds
and can have them destroyed or locked up, plus is run by every single node,
Bismuth favors the concept of ”smart” protocols. Quotes are used, because no
contract or protocol in blockchain world is really ”smart”. It is just code that is
as smart - or dumb - as the developer who wrote it.
A protocol is based upon the Bismuth transactions, that can be considered as
abstract data. It is an agreement between two or more parties on what that data
means, and what to do when an event occurs.

• Only clients that are involved in a protocol need to read the data and run
the code. Not every node.

• Code is not on chain. Can be updated, fixed, does not clobber the chain,
does not consume node resources.

• They are a ”contract” between agreeing parties, with the logic ideally being
public.

• Anyone can run the logic over the on chain data and verify that everyone
acted as they should.

9

https://github.com/bismuthfoundation/Hack-with-BIS/blob/master/01-Concepts/protocols/token.md

• Protocols can evolve, be overloaded, or serve as a basis for more evolved
protocols.

• Protocols can use protocols... for instance, a protocol could define valid
implementations (with on chain hash) of itself.

For a list of existing Bismuth protocols, see: This GitHub Link

Bismuth Features
This section contains a presentation and description of some of the core fea-
tures of the Bismuth crypto-currency.

Python and Plugins
Developers who plan to build dApps on top of the Bismuth node, are encouraged
to make use of the Bismuth feature called ”plugin”. Plugins reside in the direc-
tory /̃Bismuth/plugins. The Bismuth plugin system, although very lightweight,
allows for action and filter hooks on critical events, for easy feature addition.
For example, a plugin wanting to implement a ”block” action hook only has to
declare a simple function:

plugins/900_test/__init__.py:

def action_block(block):
print(block)

For more information about Bismuth plugins, see This Link
To activate a new plugin, the Bismuth node (node.py) must be restarted.

Use Cases
1. Lab Use Case
It is very easy for a student to set up his/her own private network by using virtual
machines and then changing the default mainnet port number (5658) to some-
thing else. By using local network addresses (for example 10.0.x.x or 192.168.x.x)
and whitelisting these in Bismuth configuration file (config.txt), it is possible to
isolate the lab network from the outside world. With such a network, a student,
researcher or a developer could test out new features or dAppswithout the need
for a hardfork in the regular main or testnet.
2. Child Chain Use Cases
The child chain use cases can deal with scalability and flexibility. A chain with
specific properties (block time, entry barrier - or not -) is needed and is not
limited by the existing mainnet, proof-of-work (pow) chain. A Hypernode-like

10

https://github.com/bismuthfoundation/Hack-with-BIS/tree/master/01-Concepts/protocols
https://github.com/bismuthfoundation/BismuthPlugins

pos chain can be run on top of the pow chain. It uses the same technology, and
a developer could have a unique chain for his/her app only, with unique chain
settings, and define unique transactions types (be it currency or non currency
data or both).
3. Event Sourcing
Event sourcing is an object/data model that stores the events leading to the
current state of objects, rather than the current state itself. A proof-of-concept
(poc) for event sourcing with sample dApps using Bismuth is available at This
Link. Event sourcing would work well in combination with a private child chain.
For example, a network of customers/providers/partners, agreeing on operating
a shared database. It could be tracking of goods, shipments, invoicing, etc. A
child chain could be operated, with every actor running a node (Hypernode-like,
with private registration) then the event sourcing poc could be used. Thismeans
that the actors would share a distributed and replicated database, where every
change to the data is an event, with immutable timestamp and source of an
event, plus rights and so on, fully auditable.
4. File Fingerprinting
The legacy wallet contains a feature for fingerprinting one or more files by using
the following code:

def fingerprint():
root.filename = filedialog.askopenfilename(multiple=True,

initialdir="", title="Select files for fingerprinting")
dict = {}
for file in root.filename:

with open(file, 'rb') as fp:
data = hashlib.blake2b(fp.read()).hexdigest()
dict[os.path.split(file)[-1]] = data

openfield.insert(INSERT, dict)

The hash of the file(s) is then inserted into the ”Data” field and can be sent to
yourself or someone else. The recipient could then use the received message
to validate the authenticity of these files.
Below is a list of some implemented use cases and games at the time of writing:

• anon.py, a private contract anonymizer service.

• Dragginator, a collectible game based on the Bismuth blockchain.

• PokaPoka, a poker game site using Bismuth tokens.

• zircodice, a dice game as private contract.

• autogame, a probabilistic multiplayer game implemented as a private con-
tract.

11

https://github.com/EggPool/BismuthEvents
https://github.com/EggPool/BismuthEvents
https://github.com/hclivess/BismuthProjects/blob/master/anon_dappie.py
https://dragginator.com
https://pokapoka.biz
https://github.com/hclivess/BismuthProjects/blob/master/zircodice_dappie.py
https://github.com/hclivess/BismuthProjects/blob/master/autogame/about.md

Coin Supply and Reward Model
The plot below shows the coin supply and rewards for the Bismuth blockchain.
At block height 8,000,000 (in year 2032 assuming 1440 blocks per day) the total
coin supply will be 63.9 million BIS. From this amount 43.0 million will be min-
ers rewards, 16.6 million BIS will be rewards to Hypernodes and 4.3 million BIS
will be developer rewards (10%) of the miner rewards). Any change to this dis-
tribution would require a future hard fork which, at the time of writing, is not
planned.

The Bismuth blockchain started May 1, 2017 and the inflation rates during the
following 10 years are shown in the table below:

12

Year Inflation
1 ∞
2 93.2%
3 38.9%
4 25.5%
5 18.4%
6 13.9%
7 10.8%
8 8.4%
9 6.6%
10 5.0%

As seen from this table, the inflation is quite high initially while it rapidly drops
to 5.0% in year 10. One reason for the relatively high initial inflation is the
fact that Bismuth had no pre-mine or ICO: The total coin supply started at zero
at the Genesis block (block height 0). Naturally, the inflation will initially be
large with such a distribution model. Some motivations behind this coin sup-
ply and rewards model is to ensure a fair distribution model of Bismuth in the
early phase, while at the same time attract miners to secure the chain with
their hash rates. As the project matures, holding Bismuth for the long-term
is encouraged by the rapidly falling inflation rates while the miners will con-
tinue to get rewarded by collecting transaction fees. For a comparison of Bis-
muth’s coin supply and reward model with some other blockchain projects, see
https://hypernodes.bismuth.live/?p=218

Cryptography
Most of today’s crypto currencies use Elliptic Curve cryptography - ECC - along
with ECDSA signature algorithm. While ECC keys and signature are short and
potentially secure with less bits than previous cryptographic keys and signa-
ture algorithms, they are a relatively new family and it is always possible that a
completely new class of flaw is found, effectively rendering all ECC based chains
insecure.
Bismuth - paradoxically - innovates by using an older but very well known asym-
metric cryptographic algorithm, RSA, which is studied since its publication in
1977, and relies on core properties of large prime numbers. It is widely used in
secure ssh and ssl certificates all over the web since decades.
Key Lengths:

• a RSA key length of 1024 bits is sufficient for many medium-security pur-
poses such as web site logins.

• For high-security applications or for data that needs to remain confidential
for more than a few years, a 2048-bit key is recommended and should be
safe until 2030.

13

https://hypernodes.bismuth.live/?p=218

• To keep data confidential for more than the next two decades, RSA recom-
mends a key size larger than 2048 bits.

• 3072 bits are recommended for usage post 2031.

Bismuth relies on 4096 bits RSA keys, so not to take any risk.
Private Key
The private key is only known by the wallet owner. It is currently stored under
PEM - base64 - format.
Example:
- - - - -BEGIN RSA PRIVATE KEY- - - - -
MIIBgjAcBgoqhkiG9w0BDAEDMA4ECKZesfWLQOiDAgID6ASCAWBu7izm8N4V
2puRO/Mdt+Y8ceywxiC0cE57nrbmvaTSvBwTg9b/xyd8YC6QK7lrhC9Njgp/
...
- - - - -END RSA PRIVATE KEY- - - - -
Public key
The public key is also stored and transmitted in PEM format
Example:
- - - - -BEGIN PUBLIC KEY- - - - -
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAnzgE34oTDlzlPFMsVkNo
foMg9Pm4rG6U8V1fZ/Ewzbtu8UjyvpERblDSaSGBy3C8uZuPpZm/VYTq5KHYJJ6y
...
kLYgWGdQc+MRSkwCwWGQtXECAwEAAQ==
- - - - -END PUBLIC KEY- - - - -
Address
The address matching a key is the sha224 hash of the public key PEM, under hex
format.
Example:
3e08b5538a4509d9daa99e01ca5912cda3e98a7f79ca01248c2bde16
Signatures
Bismuth uses PKCS1 v1.5 Signature algorithm. Both public key and signature are
sent with every transaction, and validated upon reception.

Multiple Address Schemes
In order to expand Bismuth’s capabilities and footprint, the Bismuth Founda-
tion had planned to support several alternative cryptographic primitives. This
was on the roadmap since a while and a reality since July 2019. Bismuth nodes
do now also support a new ECDSA cryptographic primitive as well as a new ad-
dresses scheme, while retaining RSA for coinbase operations and keeping full
compatibility between the two schemes.
ECDSA is used by most existing crypto-platforms, and has allowed for more effi-

14

cient and swift operations, such as rapid signing times and smaller signatures.
While integrating with Bismuth, the core developers took care to follow as much
as possible the current BIP standard as to guarantee an optimum compatibility,
which enables BIS to integrate seamlessly with the existing architecture built
around the Bitcoin ecosystem. It will introduce a new address format begin-
ning with the “Bis1” prefix, allowing for consistent and nicer-looking Bismuth
addresses. With ECDSA, Bismuth becomes paper wallet compatible, as well as
seed-word compatible. Integration with existing hardware wallet solutions such
as “Trezor” and “Ledger” become simplified, and last but not least, efficient mo-
bile wallet applications for Bismuth become a reality.
It’s up to the user
The Bismuth Foundation wants to give users the choice of which scheme to use,
whether it be the older RSA or newer ECDSA. Both algorithms have their respec-
tive strengths and weaknesses, and it should be up to the preference of the
users and application developers which one they prefer to use. Both will co-
exist within the Bismuth protocol, and be compatible but this additional facet
of modularity should appeal to everyone. Bismuth is the only platform to offer
this level of choice, and offers a high level of security- if at one point in the
future a backdoor was found for ECDSA, Bismuth would be the most unaffected
as it uses RSA for all coinbase operations, and users could immediately fallback
to it for all activity, without complicated chain swap process. The same cannot
be said for most other existing crypto-platforms, in which ECDSA is used for all
operations.
Future proof
The introduction of multi-scheme addresses will help advancing Bismuth in
many aspects, whether it be expanding its footprint and presence in hardware
devices, or boosting its capabilities in regards to address generation and for-
mats. It is a step forward in both scheme modernization and in establishing
a new standard of multi-scheme addresses. At some point, options can even
be extended beyond RSA and ECDSA. The code handling the signatures and
addresses is modular and extendable. Although undocumented, the ed25519
cryptographic primitive is also supported by current nodes for instance. More
schemes could be added later on, to address the possible threats quantum com-
puting could pose to any of the existing ones.

Mining Algorithm
The mainnet of the Bismuth crypto-currency project was launched on May 1st,
2017. The mining algorithm was based on sha224 and is briefly described here
http://dx.doi.org/10.4173/mic.2017.4.1. In the beginning therewere only CPUmin-
ers, but after less than 6 months the first GPU miners appeared and shortly
afterwards the first GPU mining pools. Bismuth was listed on the Cryptopia ex-
change during October 2017, and that led to a large increase in new accounts on
the network. By January 2018 the number of Bismuth accounts had quadrupled

15

http://dx.doi.org/10.4173/mic.2017.4.1

compared to before the exchange listing.
Since Bismuth had a relatively simplemining algorithm requiring very littlemem-
ory on the GPUs, the network was vulnerable to a 51% attack by a large FPGA
or ASIC mining operation. The core development team was well aware of this
threat, but decided to work on other issues instead, such as general network
stability improvements, in addition to new functions and features. The intro-
duction of Hypernodes and the side-chain was one example.
During August and September 2018 it became increasingly evident that an FPGA
miner had been developed, and that this mining operation was approaching a
51% portion of the overall mining power in the network. The figure below shows
the hashrate distribution of the different pools at that time:

The presence of a large FPGAminer was identified by several independent chan-
nels: Bismuth network monitoring pages, pools, miners themselves reporting
anomalies, regular exchange dumps, internal core team research on FPGA ca-
pabilities as well as work with FPGA developers.
The FPGA operation was alternating between mining on his own account and
using Pool 4 in the figure above. After the Hypernodes had been successfully
launched, the core dev team had to act swiftly, and an evolution of the mining
algorithm moved to the top of the priority list, even though this had not been
placed on the roadmap which was published a few months earlier. The modi-

16

fied mining algorithm was developed and tested on a private testnet in record
time during September 2018. It took less than 3 weeks from the first conceptual
ideas until launch of the new mining algorithm. Even with this rapid pace of
development, the exchanges and the pools were given 1 week’s notice and time
to update their nodes.
What made the FPGA mining so efficient was the fact that the legacy Bismuth
Mining algorithm required only processing power, but no memory. After careful
research and tests, one of the core developers, EggdraSyl, came up with a slight
change to the current mining algorithm that:

• Is memory hard.

• Would block or penalize the specific FPGA miner a lot.

• Still is fast to verify on nodes.

• Needs only minimal change to current GPU miners, so it can be imple-
mented quickly by pools.

The “Bismuth Heavy 3” mining algorithm was born, and would be used after the
fork.
On October 8, 2018 - block height 854,660 - the new and novel Heavy3 mining al-
gorithmwas introduced on the Bismuthmainnet. Previously the Bismuthmining
algorithm was computationally expensive, but required little memory. In order
to make the newmining algorithmmore resistant to FPGAs and ASICs, a require-
ment to hold a 1GB random binary file in memory was introduced, as illustrated
with the yellow boxes in the chart below:

17

Bismuth Heavy3
The idea behind the “Heavy3” algorithm designed by EggdraSyl is both simple
and effective: It requires a read from a random offset in a fixed lookup table,
for each tested nonce.
This concept can be applied to any othermining algorithm as an additional layer
to protect against a similar attack. If the matching algorithm uses hashcash or
not - bismuth does not - is irrelevant. The final hash state that is tested is
a vector of 32 bits words. Since it is a hash result, it can be considered as a
random vector, it can contain anything, and you can not reverse the process –
this is a hash core property – The lookup table also contains random data. For
each nonce, the extra step is applying a XOR transform to the hash output, given
a random vector from the lookup table, with the index begin determined by the
hash itself, therefore at a random, non predictable, location. The result – xor’d
hash state – is considered as the input vector to the difficulty matching function.

• This transformation does not affect the probability of finding a good can-
didate.

• It does not change the hashing algorithm itself.

• It does not change the difficulty matching algorithm either.

• It requires reading of about 8 words from a random index for every tried
nonce.

• The miner has to keep a copy of the whole lookup table in memory at all
time.

This is then a generic tweak that can be applied instantly to any other crypto.
Mid and Long Term Considerations
The core team is still in favor of FPGAs and – why not – dedicated ASICs hardware
for Bismuth.

• This is the only way a PoW coin can protect its network. Pure GPU coins
always are at the mercy of a nicehash or similarly rented hash attack.

• Hash/Watt of FPGAs and ASICs is way better than GPUs, so you have bet-
ter efficiency and more hash, a more secure network with more resources
needed to take over.

This is only true if the mining equipment is largely available. It is not when a
single operation has thousands of custom proprietary hardware.
Next step could be the introducing several mining channels, so that everyone
has a fair chance to mine, reach profitability, and contribute to the network

18

safety (CPUs, GPUs, FPGAs, ASICs). This would also allow for faster algorithm
changes should a similar situation arise again.

Chain Security
The Bismuth blockchain uses a feedback control strategy to calculate the dif-
ficulty adjustment in the mining process, see doi:10.4173/mic.2017.4.1 in the MIC
journal for more details. In combination with this feedback controller Bismuth
uses the longest chain rule to determine consensus. How does such an ap-
proach compare with the alternative approach of deciding consensus based on
total hashwork (ie. selecting the chain which has the most hashwork in it)? To
answer this question, the Simulink model shown in Figure 7 in the MIC paper is
used. Consider the following scenario: 1) The difficulty level is stable at diff=102
and the 24 hour average blocktime is stable at 60 seconds. 2) At block number
10,000 a large pool with 25% of the total hashpower decides to break off on it’s
own chain to try to mine a longer chain than the rest of the network. There will
now be two competing chains: 1) The chain breaking off with 25% of the original
hashpower and 2) The main network which will in this case get reduced to 75%
of the original hashpower at block number 10,000.

0 0.5 1 1.5 2

Block number 104

50

100

150

A
ve

ra
ge

 B
lo

ck
 T

im
e

(s
ec

)

0 0.5 1 1.5 2

Block number 104

96

98

100

102

104

C
on

tr
ol

le
r

ou
tp

ut
 (

di
ffi

cu
lty

)

The figure above shows how the feedback controller and the difficulty adjust-
ment react for the 25% hashpower chain. The difficulty drops from 102 down
to 98, while the average blocktime increases to almost 130 seconds, before it
comes back down again and settles at 60 seconds. The total accumulated time
to generate 20,000 blocks in this example is 14.87 days.

19

http://dx.doi.org/10.4173/mic.2017.4.1

0 0.5 1 1.5 2

Block number 104

55

60

65

70

75

A
ve

ra
ge

 B
lo

ck
 T

im
e

(s
ec

)

0 0.5 1 1.5 2

Block number 104

101

101.5

102

102.5

C
on

tr
ol

le
r

ou
tp

ut
 (

di
ffi

cu
lty

)

The figure above shows how the feedback controller and the difficulty adjust-
ment react for the other chain with 75% of the hashpower. The difficulty drops
from 102 down to 101, while the average blocktime increases to about 71 sec-
onds, before it comes back down again and settles at 60 seconds. The total
accumulated time to generate 20,000 blocks in this example is 14.02 days. The
reasonwhy the 75% chain generates blocks faster than the 25% chain, is because
the overshoot in blocktime (71 seconds vs 130 seconds) is smaller for the chain
with the largest hashpower behind it. Since the 75% hashpower chain produces
20,000 blocks in this example faster than the chain with 25% of the hashpower,
the 75% chain will also be the longest and the consensus rule currently imple-
mented in Bismuth will select the chain with the most hashwork in it as the win-
ner. As can be seen from this simulation, the chain with the largest amount of
remaining hashpower will produce the longest chain in case of a network fork. In
other words, Bismuth’s implementation of a feedback control algorithm for the
difficulty adjustment combined with the longest chain rule achieves the same
result as selecting consensus based on the largest total amount of hashwork, a
method which is used in other blockchain implementations. Bismuth’s unique
implementation of difficulty adjustment and longest chain rule can therefore
be considered as secure as other consensus implementations based on total
hashwork.

Tail Removal Block Validation
The probability density function (PDF) describing the distribution of blocktimes
in many crypto-currencies, such as Bitcoin for example, has a long tail, meaning
that there is a small, but nonzero, probability that it can take a very long time
to generate a new block, even when the computational power of the miners
is constant or increasing. Such long blocktimes is a problem for two reasons:
1) Long processing times of transactions is undesirable. Processing times which
aremany factors larger than the desired average blocktime are seen as negative,
2) a blockchain feedback control algorithm can typically not distinguish between
a long tail blocktime and the situation where the computational power of the
miners has dropped. Hence, a long tail blocktime will normally cause a fast-

20

responding controller to lower the difficulty when it should not do so, and this
behavior can cause unwanted oscillations or instability in the process.

In Bismuth a solution for removing long tail blocks has been implemented and
the results are shown in the figures above. The figure on the left shows the PDF
without the tail removal code activated (solid red curve) and with tail removal
activated (blue bars). The figure on the right shows the same, but zoomed in
at blocktimes larger than 180 seconds. As seen from these figures, the prob-
ability of long tail blocktimes (larger than 180 seconds) has been significantly
reduced in Bismuth, ensuring timely execution of transactions. For more in-
formation about the actual implementation, see the journal article: J. Kučera
and G. Hovland, “Tail Removal Block Validation: Implementation and Analysis”,
http://dx.doi.org/10.4173/mic.2018.3.1

Operation and Data Field
Bismuth has two fields which can be used by dApp developers: the Operation
and Data fields. These fields are marked with red rectangles in the light wallet
in the figure below:

21

http://dx.doi.org/10.4173/mic.2018.3.1

The two fields are also available in the Tornado wallet, see figure below:

The operation and data fields can also be used programmatically, for example
by using the examples at This Link. A code example from this repository is:

from bismuthclient.bismuthclient import BismuthClient

22

https://github.com/bismuthfoundation/Hack-with-BIS/tree/master/08a-Send-transaction-from-code

if __name__ == "__main__":
client = BismuthClient(wallet_file='wallet.der')
if not client.address:

client.new_wallet()
client.load_wallet()
print(f"My address is {client.address}")
txid = client.send(recipient=client.address, amount=0) # Tries to send

0 to self
print(f"Txid is {txid}")

This example code sends 0 BIS to yourself. To send BIS to another account,
replace client.address with the account address as a string, for example: recip-
ient=”9ba0f8ca03439a8b4222b256a5f56f4f563f6d83755f525992fa5daf”
To utilize the operation and datafield, the following example command could
be used:

txid = client.send(recipient=
"9ba0f8ca03439a8b4222b256a5f56f4f563f6d83755f525992fa5daf",

operation='dragg:transfer', data='draggon_adn')

The use of operation and datafield, is a major difference from other crypto-
currencies. Because of the real world principle, the Bismuth project acknowl-
edges the need to store data in the chain, and does not make it hard for the
user. Instead, Bismuth uses that as meta data that can serve for higher level
operations. This is in the pure Bismuth spirit: abstract data, easy to read/write,
the node handles without having to know what operation/datafield means and
process, but that participating apps can interpret and act upon. The operation/-
datafield also allow the separation between the node (base layer, transport/au-
thenticity/immutability/abstract data) and the dApp (use the data, interprets,
acts upon, higher level of operations).

Private Contracts
As described in the section above, Bismuth has two fields which can be lever-
aged by extra protocols: the ”data” and ”operation” fields. These fields can be
utilized in different ways to create private contracts:

1) Private as in private data, ie. encrypted messages.

2) Private as in non public contract code.

3) Private as in private, untraceable recipient by using abstract transactions
and encrypted messages.

Abstract Transactions
One of BIS strengths is to allow abstract transactions. These are transactions

23

with 0 BIS involved, and data that is only understandable by the dApps which
participate in that protocol. The ”operation” field is used as a kind of a ”com-
mand” operator. The convention is to use strings formated as ”class:operation”
to allow for easy classification, like a kind of namespace. The openfield then
holds the associated (short) data. Developers can define their own operations,
but have to make sure that their protocol does not use already used names-
paces, see This Link for an up-to-date list of existing protocols.
BIS transaction fees are fixed and depend only on the openfield length in byte.
Fee = 0.01 + len(openfield/100000). On-chain storage is not encouraged and
could be restricted in the future. Developers should limit the payload to the
minimum and use side chains or dApp to dApp channels to store real data.

Hypernodes and Sidechain
When so many different masternode coins are released, it can be useful to give
a few hints at what makes the Bismuth Hypernodes so innovative.
Bismuth Hypernodes as a Tech lab and Bismuth abilities proof
As Bismuth grows and the team gathers more andmore experience, some weak-
nesses of the nodes are more visible. It is not always possible to test or change
the design on a running blockchain, used bymany people and organizations, but
it is easy to use the Hypernodes as a lab to field test new technologies, libraries
and algorithms. The Bismuth Hypernodes will include several new technology
layers that could be used later on, on the core code.
Hypernodes also demonstrate the ease of integration and leverage of Bismuth
abstract transactions. The Hypernodes are a good example of what can be done
with the openness and abstraction layer that Bismuth provides.
Network Value
The goal of the Bismuth Hypernodes is to provide added value to the network.
Some basic masternodes implementations are merely staking or check for a
”ping” answer.
The Bismuth Hypernodes do operate on an entire different layer. They use a
chain on their own, with no currency but metrics - Key Performance Indicators
(KPIs) - instead. Both chains are loosely coupled and operate in an almost inde-
pendent manner, with very different rules. The Hypernodes operate on a Proof
of Stake (PoS) chain, with no mining and no competition between the Hypern-
odes. They observe and store their KPIs in the PoS chain. Since the Hypernodes
are not part of the PoW chain, they do not add extra attack vectors.
Eligible Hypernodes are derived from immutable info stored in the PoW chain.
Quality index and bad behavior from both PoS and PoW nodes is recorded, im-
mutable also, in the PoS chain for later action.
The independence of the two chains ensures:

24

https://github.com/bismuthfoundation/Hack-with-BIS/tree/master/01-Concepts/protocols

a/ It is way harder to manipulate the network, since it requires to forge both
chains in very different ways.

b/ Bad actors and cheating attempts are recorded in an independent and
immutable way. You cannot cheat unnoticed.

Bismuth may be the first crypto-currency to come with an integrated but in-
dependent KPIs dedicated side chain that monitors the network and ensures
actors fair play.
Bismuth Hybrid PoW/PoS
The protocol used by Bismuth PoW/PoS is a hybrid, two-layers approach. It uses
strength from both PoW and PoS and tries to avoid the pitfalls of other hybrid
approaches. Rather than being integral part of the main consensus, the PoS
layer acts as an impartial observer of the PoW chain, and its metrics can then
be used to act upon the core cause of the issues – the bad actors.
PoS watches over the PoW actors, PoW decides who can be PoS actor. It is like
an Ourobouros, each chain having some control over the other one. In terms of
security, it is a big improvement, since both chains would have to be attacked
at the same time and in a coherent manner to gain some advantage. Since the
mechanisms of each chain are so different, this is an epic task.
Future use of such side chains
The loosely coupled two layer approach of the Hypernodes has several advan-
tages, as well as many future uses. Potential ones are:

• There is no incentive, on the contrary, in forging more blocks or blocking
others from forging theirs to take their turn.

• For now, there is only a single PoS chain, the Hypernodes with their met-
rics. But any number of PoS chains can be added to the Bismuth Network,
without overloading the main PoW chain. You can see them as side chains,
and they give a lot of flexibility.

• Since the chains are so loosely coupled, the very same protocol can be
used by other currencies. Almost any currency that is PoW only could add
a Bismuth-like Hypernode layer and benefit from the security of this hybrid
approach, as well as flexible side or child chains.

So, Bismuth continues to explore new territories, with practical and field tested
code. The goal is for the Hypernodes code to become a framework for easy to
run side chains. Every such chain can have its own rules, block time, fees (or no
fees), storage, and still be secured by the main BIS chain
Some peeks into the technology
From a simple proof of concept, the Bismuth code grew into a full featured node

25

and client code base. Some new technology had to be left over in order to
keep some compatibility with the current network. The Hypernodes are not
constrained by that, and so can use a more modern approach from the start.
Async IO
Async / Await, use of co-routines, is a big strength of modern python. This al-
lows to write efficient and easy to read async code. No more need to spawn
hundreds of threads of processes, handle locks and hard to debug race condi-
tions. No need to fight with several concurrent access to a single database file.
No more infamous Global Interpreter Lock (GIL) limitations. Within the Hyper-
nodes, Async is used to its full extent. The core of a Hypernode is a Tornado
Server and client, with callbacks using async calls themselves. This is both a big
plus for the performance of the node itself (it barely uses any resource under
load) as well as from a safety point of view.
Protobuf
Google Protobuf is a serialization protocol that is both fast and efficient. It also
has available bindings for almost any language, so it was chosen as the low
level exchange format. Instead of a verbose text encoding of the structures, the
Hypernodes will use protobuf.
Pros:

• fast, low overhead.

• Small size of the packets.

• more validity controls.

• cross OS and language compatible.

Cryptographic primitives

Hash
The Hypernodes make use of modern blake2 cryptographic primitives. They are
fast, safe, and have a variable output length.
Keys and signature
Hypernodes addresses use classic ECDSA cryptographic curves.
Chain coupling
How do the two layers interact ? How does PoS (Hypernodes) use PoW (nodes)?
Each Hypernode runs along with a classic Bismuth (PoW) node. It has read ac-
cess to the PoW ledger and node status, like peers, consensus, block height.
This is a read only access. The Hypernode is just an observer. From this data,
the Hypernode is able to:

26

A/ Get a safe, immutable, shared list of valid Hypernodes. At each round start,
the Hypernodes need a common list of theirs to decide of the round ju-
rors. This list is extracted from the PoW chain, from a checkpoint in the
past with enough confirmations to be stable. It is composed of the valid
registrations of the Hypernodes owners. This start list cannot be manipu-
lated by the PoS layer.

B/ Collect metrics over the PoW peers. Each time a peer connects to the PoW
node, it leaks much info: version, block height, ip, ping time, consensus
state, connectivity status ... The same for specific actions like rollbacks.
Even a failed connection attempt is something worth recording. Those are
metrics the Hypernode can collect and just write in the PoS chain. Once
aggregated over a round by all the Hypernodes, these metrics can be used
to evaluate the state of the PoW participants, and then compile lists of
«good» and «bad» peers for instance.

How does PoW (nodes) use PoS (Hypernode)?
In the same way, the PoW layer can use data provided by the Hypernodes:

• Dynamic list of bad and good peers.

• More reliable info about the current net height.

This will allow the nodes to avoid bad rep peers - swarms of fake nodes in the
cloud or fake nodes targeting miner nodes - as well as old nodes that are stuck
on a bad block, not maintained or on an old version. So, instead of being inte-
gral part of the PoW process - that would only add complexity as well as attack
vectors - the PoS chain rather gives access to impartial extra data that is used
to qualify the PoW and PoS actors.
The metrics - KPIs
Many metrics are available here to act upon. The role of the Hypernodes is pre-
cisely to collect them all, so the team can analyze and decide which one is to be
used, and how. The metrics themselves can evolve with time. So can the active
metrics and their corresponding trigger. The Bismuth developers believe this
will be hand crafted at start, then evolve into governance parameters. Hypern-
odes and/or nodes owner will likely be able to vote upon various triggers and
levels in order to mitigate observed bad behavior. The precise metrics and how
they can be used will be detailed in another – evolving - document.
Hypernodes payouts
With usual masternodes mechanism, the forging masternode gets a reward for
each block it forges. This means there is an incentive to cheat, since if you
get more blocks or deny other blocks, you can hope for a higher reward. With
the Bismuth Hypernodes, such an attempt would play against you, since the
reward is not directly related to the blocks you forge, and everyone would see

27

you cheat and record it in the PoS ledger, forever. Also, with the Bismuth scheme,
every Hypernode owner is paid on a regular basis. No randomness involved.
Every finished round leads to a payout for every active Hypernode. Hypernode
payouts can be handled by several means. In the first steps, they will be handled
by a private contract so it can be tuned and the team makes sure it is safe.
The process is something like this:

• There is a given reward amount for the period (can be fixed or a governance
parameter).

• The «active» Hypernodes for the period share the reward. Active means
the Hypernode was in the list of valid Hypernodes, has collected and sent
metrics, has interacted with peers, may have forged some blocks if it was
a juror.

• The rewards should be proportional to the collateral amount. If you have
one Hypernode with twice the collateral as another one, it will get twice
its reward.

• The private contract computes every reward and pays them.

• The details – all computation inputs - are public and stored in the PoS
chain for everyone to verify.

• The algorithm is public too.

Governance
Since KPIs and levels will likely be used to trigger bans or actions against some
actors, it is natural to ask for a governance process. At launch, given the exper-
imental nature of the project however, this will not be possible. The team will
manually handle the analysis process, in order to have a good overview of the
meaningful KPIs and their usage. Later on, the filters could become autonomous
and various parameters could be voted upon by Hypernodes owners.

Hyperblock Compression
Bismuth uses a dual database system for both redundancy and speed. Besides
the standard full ledger database, hyperblocks are a compressed version of the
same data, which contain only the last 15000 blocks and only sums of outstand-
ing balances greater than zero for all preceding transactions. In some scenar-
ios, hyperblock balances are compared to ledger data for discrepancy detection.
Also, the hyperblock database is loaded into the memory on node startup, lim-
iting hard drive access to minimize system load and increase database reaction
speed and availability.

Penalty System

28

Every node in the Bismuth consensus system tracks the behaviour of all con-
nected clients. Penalties are applied to all nodes that enforce chain switching
through a single block rollback, one half of the penalty is removed for being
honest and delivering the agnostically longest chain block. Nodes that are too
far in the future for local consensus are banned automatically. This set of rules
requires an attacker to not only own more than half of the computing power, it
also requires him to be connected to all nodes in the system, attack them all at
the same time and setup a majority of nodes. Even then, the attack becomes
progressively harder with every attacked block.

Mirror Blocks
Mirror block technology enables easy implementation of hardcoded contracts
like hypernode rewards, offline staking and development rewards. Mirror block
storage is on-chain but outside of traditional blocks, denominated by a minus
symbol not to interfere with the synchronization process. The mirror blocks
are never shared between nodes, instead they are created from the contract
execution, optionally dependent on the blockchain data. This approach makes
it an integral part of the standard transaction database, streamlining operations
like account balance evaluation.

Testnet
The Bismuth testnet consists of a network of nodes with different ip addresses,
much like the Bismuth mainnet, but with fewer nodes. To setup a testnet node,
the following parameters must be defined in the file config.txt:

port=2829
version=testnet
version_allow=testnet
testnet=True

The difficulty level for themining algorithm on testnet is low on purpose. Hence,
developers can easily set up a local pool and miner to generate BIS coins on
testnet. For this, optipoolware is recommended.

Regnet
To setup a regnet node, the following parameters must be defined in the file
config.txt:

version=regnet
version_allow=regnet

To test that testnet or regnet are running the following command can be used:

python3 commands.py statusget

29

https://github.com/bismuthfoundation/Optipoolware

The output from regnet should be something like this:

Number of arguments: 2 arguments.
Argument List: ['commands.py', 'statusget']
Regtest mode
{"protocolversion": "regnet", "address":

"6a8b4990784617730af465a0dfcbb87284bca8b2189e02798d0a5a5f",
"walletversion": "4.2.9", "testnet": false, "blocks": 1, "timeoffset":
0, "connections": 0, "connections_list": {}, "difficulty": 24.0,
"threads": 3, "uptime": 131, "consensus": null, "consensus_percent":
0, "server_timestamp": "1549123577.02", "regnet": true}

For regnet, there is no need to set up a miner. The ”generate” command in-
stamines N blocks with current wallet address as miner. For example, you can
”generate” 10 blocks, then you have bis you can test send on your regnet. After
that, ”generate” 1 block, and your mempool transactions are instamined.
Regnet is useful because it starts from block height=1 and does not require to
sync the blockchain with networked peers. Many features of a new dApp can be
tested in the early stage on regnet. Only when distributed networked features
need to be tested, does the developer need to switch from regnet to testnet.

Education and Research
Bismuth is an ideal platform for education and research. Examples of research
done using Bismuth mainnet and testnet are the following journal articles:

• J. Kučera and G. Hovland, ”Tail Removal Block Validation: Implementation
and Analysis”, http://dx.doi.org/10.4173/mic.2018.3.1

• G. Hovland and J. Kučera, Nonlinear Feedback Control and Stability Analysis
of a Proof-of-Work Blockchain”, http://dx.doi.org/10.4173/mic.2017.4.1

Regnet would be particularly useful in an educational setting, as each student
could run a local regnet on his/her computer, without the need to participate
in a distributed network. Many of the basic concepts of blockchain technology
could be taught using the Bismuth regnet. Researchers and students who de-
velop novel functions and features using Bismuth, are encouraged to contact
the Bismuth core development team on discord, at https://discord.gg/4tB3pYJ.
New functions and features could potentially make it into the Bismuth node
code, after a period of additional testing by the core team.

30

http://dx.doi.org/10.4173/mic.2018.3.1
http://dx.doi.org/10.4173/mic.2017.4.1
https://discord.gg/4tB3pYJ

Future Prospectives
The goal of the Bismuth project is to make the core node well documented and
as streamlined and efficient as possible, and then encourage future extensions
and applications building on top of Bismuth to use the plugin system and sep-
arate repositories.
The Bismuth developers have a focus on supporting ”crypto standard compli-
ance” and ”ecosystem”, to allow for easier interaction with existing tools, pro-
tocols and platforms, and therefore removing ”friction”. New address formats
(such as ecdsa), bitcoin like json-rpc server, docker images of bismuth services
fall in this category. Another example is the packaged and easy to use ”Bismuth-
Client” python module which has proven to be valuable, with several team and
third party devs building upon it, and attracting new devs.
Bismuth is already a feature-rich crypto-currency, and this whitepaper has fo-
cused on parts which are already implemented, tested and working. As more
features are developed in the future, they will be documented and included in
updated versions of this whitepaper. The core teamhas a development roadmap,
which is available at this GitHub link.

Summary
This whitepaper provides an outline of the philosophy, pillars and features of
the Bismuth crypto-currency. The three pillars of Bismuth are: 1) The real world
principle, meaning that the core developer team takes a pragmatic approach
when introducing new features and functions, 2) The ”need to store” meaning
that you only store on chain what needs to be stored on-chain, and nothing
more. Still, following the real world principle, on chain storage is not strongly
discouraged and 3) Clear line of trust, meaning that when you have to trust
something or someone, you know what/who you have to trust. Bismuth is not
presented as trustless, whereas you implicitly trust several layers and people.
Some of the core features of Bismuth have been presented and discussed in
some detail. Links and references have been provided for readers seeking more
detailed information about the Bismuth crypto-currency and its implementa-
tion.

31

https://github.com/bismuthfoundation/Roadmap

Disclaimer
The information in this whitepaper is for informational purposes only and does
not contain any investment or financial advice. Please do your own research
before making any investment decisions. None of the information in this docu-
ment constitutes, or should be relied on as, a suggestion, offer, or other solici-
tation to engage in, or refrain from engaging in, any purchase, sale, or any other
any investment-related activity with respect to any crypto-currency. Crypto-
currency investments are volatile and high risk in nature. Do not invest more
than what you can afford to lose.

Document Revision History

• August 13, 2019: v1.2, multiple address schemes, tokens, formatting, up-
dated future prospectives

• May 24, 2019: v1.1, added sections about mirror blocks, chain security, up-
dated coin supply and rewards

• April 3, 2019: v1.0 of whitepaper released

32

	Abstract
	Introduction
	Bismuth Features
	Use Cases
	Coin Supply and Reward Model
	Cryptography
	Multiple Address Schemes
	Mining Algorithm
	Chain Security
	Tail Removal Block Validation
	Operation and Data Field
	Private Contracts
	Hypernodes and Sidechain
	Hyperblock Compression
	Penalty System
	Mirror Blocks
	Testnet
	Regnet
	Education and Research

	Future Prospectives
	Summary
	Disclaimer

