
About

Description

42-coin is extremely rare cryptocurrency with unique deflationary emission model, fair distribution (no

ICO, premine or instamine) and both private and public transaction support. It is based on an open source

peer-to-peer internet protocol and hybrid Proof-of-Work / Proof-of-Stake block generation methods.

Technical features (protocol)

Block

The transactions history is permanently recorded in the network through items called blocks. A block is a

record of some or all of the most recent transactions that have not yet been recorded in any prior blocks.

Each block memorializes what took place immediately before it was created.

Block structure

Field Type sizeof Description

Magic number unsigned int 4 Always 0xE5E9E8E4

Block size unsigned int 4
Number of bytes following

up to end of block

Block header struct 80 Consists of 6 items

Transactions

count

Variable

integer
1 - 9 -

Transactions

set
transaction[]

Transactions

size
List of transactions

Header

signature

unsigned

char[]
<= 72

Signature for Proof-of-

Stake is placed here.

Transaction

A transaction is a signed section of data that is broadcast to the network and collected into blocks. It

typically references previous transaction(s) and dedicates a certain number of 42 from it to one or more

new public key(s). Currently there are a few transaction types possible.

User operation

These transactions are typically used to redeem 42 from unspent inputs. It generally references unspent

input(s) and creates a new output(s) with specified value(s) and destination(s).

Coinbase

Coinbase have a single input, and this input has a 'coinbase' parameter instead of a scriptSig. The data in

'coinbase' can be anything; it isn't used. 42 puts the current compact-format target and the arbitrary-

precision 'extraNonce' number there, which increments every time the Nonce field in the block header

overflows. The extranonce contributes to enlarge the domain for the proof of work function.

These transactions are used to reward the Proof-of-Work miners. Proof-of-stake blocks have the

coinbase transaction too, but with empty output.

Coinstake

These transactions are used to provide a suitable proof for Proof-of-Stake block header. This type is

similar to user transactions, but with some differences.

 First output must be empty;

 First input of this transaction is required to satisfy a current Proof-of-Stake difficulty.

 It's allowed to generate new coins through paying a negative fee.

 A destination of the second output must be Pay-to-Pubkey (described later).

General format of a transaction

Field Type sizeof Description

Version
unsigned

int
4 Currently 1

Timestamp
unsigned

int
4 Transaction timestamp

Inputs

count

variable

int
1 – 9 -

Inputs

array
TxIn[]

inputs set

size
Inputs array or coinbase property

Outputs

count

variable

int
1 – 9 -

Outputs

array
TxOut[]

outputs set

size
Array of output structures

Lock time
unsigned

int
4

block height or timestamp when

transaction is final

Input format

An input is a reference to an output in a different transaction. Multiple inputs are often listed in a

transaction. The values of the referenced outputs are added up, and the total is usable in the outputs of

this transaction.

Field Type sizeof Description

txid
unsigned

char[]
32 ID of previous transaction

n
unsigned

int
4

Number indexing an output of the to-be-

consumed transaction

scriptSigLength
variable

int
1-9 scriptSig length

scriptSig unsigned - first half of script, signatures for the

char[] scriptPubKey

nSequence
unsigned

int
4

Transaction variant number, irrelevant

if nLockTime isn't specified. 0xffffffff

by default, see this link for a detailed

explanation.

Output format

An output contains instructions for sending 42. Value is the number of Satoshi (1 42 = 100,000,000

Satoshi, 1 Satoshi in 42 is also called “Dent”) that this output will be worth when claimed.

Field Type sizeof Description

nValue
unsigned long

int
8

the number of Satoshis(42/108) to

be transfered

scriptPubKeyLength variable int 1-9 scriptPubKey length

scriptPubKey
unsigned

char[]
-

second half of script, spending

instructions

Destinations

There are three destination types allowed for user and coinbase transactions:

 Public key (Pay-to-Pubkey);

 Public key hash (Pay-to-PubkeyHash);

 Script hash (Pay-to-ScriptHash);

 Empty destination;

 Non-standard script.

Pay-to-Pubkey

 scriptPubKey: [pubKey] OP_CHECKSIG

 scriptSig: [sig]

Pay-to-PubkeyHash

 scriptPubKey: OP_DUP OP_HASH160 [pubKeyHash] OP_EQUALVERIFY OP_CHECKSIG

 scriptSig: [sig] [pubKey]

Pay-to-ScriptHash

Send to script hash:

 scriptPubKey: OP_HASH160 [20-byte-hash of {[pubkey] OP_CHECKSIG}] OP_EQUAL

 scriptSig: <depending on inputs type>

Redeem example:

 scriptPubKey: OP_HASH160 [20-byte-hash of {[pubkey] OP_CHECKSIG}] OP_EQUAL

 scriptSig: [signature] {[pubkey] OP_CHECKSIG}

Empty destinations

http://bitcoin.stackexchange.com/questions/2025/what-is-txins-sequence

 scriptPubKey: (empty)

 scriptSig: (empty)

Non-standard scripts

Anyone-can-spend:

 scriptPubKey: (empty)

 scriptSig: OP_TRUE

Proof-of-Work

A proof-of-work is a solution for difficult (costly) mathematical task. This solution must be trivial to check
whether data satisfies claimed requirements.

Currently proof-of-work remains the most practical way of providing initial minting of a crypto-currency. So
we decided to keep it as part of our hybrid design.

42-coin uses the hashcash method to provide proofs of the work. The difficulty of this work is adjusted so
as to limit the rate at which new blocks can be generated by the network to required target spacing rate
(from 10 to 30 minutes). Due to the very low probability of successful proof generation, this makes it
unpredictable which worker computer in the network will be able to generate the next solution.

How long will it take me to generate a proof-of-work?

No one can say exactly. But there is an estimation of how long it might take.

Imagine that you have a hardware with 1 MH/s hashing speed. Let's estimate how much time the

generation of proof-of-work will take from you in average, with a current 42-coin proof-of-work difficulty.

Difficulty 1.0 is represented by

0x00000000FF

value of target. So, to get a successful proof of work we need to perform 0xFFFFFFFFFFFFFFFF /

0x00000000FFFFFFFF or ~ 4294967297 attempts.

At difficulty 360 we need ~ 360 * 4294967297 = 1546188226920 attempts. If you have 1 MH/s or

1000000 hashes per second, then you will be able to scan such amount of hashes within 1546188226920

/ 1000000 = 1546188 seconds or 1546188 / 86400 = 17,89 days.

Probability of successful block generation during one day could be calculated from available hashrate

using formula:

P = nHashesPerSecond * 86400 / (4294967297 * difficulty)

How does it work?

Each block header represented by structure of 6 fields, a some of this fields could be varied pretty freely.

Field Type Sizeof Requirements

nVersion
unsigned

int
4 Shouldn't be modified manually

http://en.wikipedia.org/wiki/Hashcash

hashPrevBlock
unsigned

char[]
32 Shouldn't be modified manually

hashMerkleRoot
unsigned

char[]
32

It's a merkle tree hash. Could be

modified through modification, addition

or removal of transactions.

nTime
unsigned

int
4

Can be updated manually to any value

from [max tx timestamp, time() + 3600]

interval.

nBits
unsigned

int
4 Shouldn't be updated manually

nNonce
unsigned

int
4

Attempts counter for Proof-of-Work. You

need to update this field for every new

hashing attempt.

What about rewards?

The block reward is zero, miners can only gather fees from transactions.

Proof-of-Stake

Proof of stake was introduced by Sunny King in Peercoin, alongside proof of work on the 19th August

2012. Proof-of-Stake is term referring to the use of currency itself (ownership) to achieve certain goals. In

the 42 it is used to provide mining and transaction processing on a par with Proof-of-Work.

42-coin uses the mixed Coin-Age/CoinDayWeight approach to provide proofs of the stake. The Proof-of-

Stake difficulty is adjusted so as to limit the rate at which new blocks can be generated by the network to

7 minutes target spacing rate. Due to the very low probability of successful proof generation, this makes it

unpredictable which computer in the network will be able to generate the next solution.

Coin Age

Coin age refers to the age of txn inputs. Coin age is equal to the number of coins sent times the average
age on these coins. Age is measured in days. Age is reset to zero whenever a coin is sent AND
whenever a coin provides a signature. Coin age could be used to calculate mandatory fees, block reward
or proofhash target.

CoinDayWeight

It's similar to coin age but age is calculated using 42-hours offset without upper limit. CoinDayWeight is a
parameter of proofhash target in the proof-of-stake system.

nBlockTarget = CoinDayWeight * nNetworkTarget

Proof hash must satisfy the nBlockTarget, so greater CoinDayWeight means higher probability for

generation of proof-of-stake block.

Coinstake kernel

Coinstake kernel it's a virtual structure which created during Proof-of-Stake block validation attempt. This

structure exists in database and memory, but not on the network. The kernel parameters are described in

the following table:

http://en.wikipedia.org/wiki/Merkle_tree
https://github.com/novacoin-project/novacoin/wiki/Coin-Age

Field Type sizeof Description

nStakeModifier
unsigned

long int
8

Deterministic modifier, scrambles

computation to make it very difficult to

precompute future Proof-of-Stake at the

time of the coin's confirmation.

nTimeBlockFrom
unsigned

int
4

Timestamp for block which provided

previous transaction, prevent nodes from

guessing a good timestamp to generate

transaction for future advantage.

nTxPrevOffset
unsigned

int
4

Offset of previous transaction inside the

block, used to reduce the chance of nodes

generating kernel coinstake at the same

time.

nTxPrevTime
unsigned

int
4

Timestamp of previous transaction, used

to reduce the chance of nodes generating

coinstake kernel at the same time.

nPrevoutNum
unsigned

int
4

Output number of previous transaction,

used to reduce the chance of nodes

generating coinstake kernel at the same

time.

nTimeTx
unsigned

int
4 Current timestamp

How it's supposed to work?

It's performed through scanning all available inputs in order to find lucky one that satisfies following

condition:

 SHA256(SHA256(KERNEL)) < CoinDayWeight * NetworkTarget

Miner has to find a SHA256 hash that is under the target value. Target is derived from network target

using CoinDayWeight parameter. The proof is presented by kernel hash and header signature. Each

coinstake kernel represented by structure of 6 fields, a some of this fields could be varied pretty freely.

Field Type sizeof Requirements

nStakeModifier
unsigned

long int
8 Shouldn't be modified manually.

nTimeBlockFrom unsigned int 4
Timestamp for block which provided

previous transaction.

nTxPrevOffset unsigned int 4
Offset of previous transaction inside

the block.

nTxPrevTime unsigned int 4 Timestamp of previous transaction.

nPrevoutNum unsigned int 4 Output number of previous transaction.

nTimeTx unsigned int 4 Current timestamp.

The hashing result of a valid Proof-of-Stake value must be lower than block target. Miner tries to find this

suitable solution by scanning all available unspent inputs with suitable CoinDayWeight.

How long will it take me to generate a Proof-of-Stake?

Just like with Proof-of-Work, no-one can say exactly. But there is an estimation of how long it might take.

Calculations are quite similar with Proof-of-Work, but instead of hash we have coin * day-in-seconds here.

So, at difficulty 1.0 we need ~ 4294967297 coin * day-in-seconds to find a block.

Probability of successful block generation during one day could be calculated from

available CoinDayWeight using formula:

 P = CoinDayWeight * 86400 / (4294967297 * difficulty)

Average block generation time could be calculated as:

 T = 4294967297 * difficulty / (CoinDayWeight * 86400)

When can I start generating Proof-of-Stake blocks?

If you have balance, then 42d would automatically try to generate proof hashes for you.

What about rewards?

The block reward is zero and, and fees are destroyed in PoS blocks - this makes 42 a deflationary coin.

Mining and Blockchain

Mining is a term referring to the generation of new blocks for 42-coin blockchain. It's required to provide
confirmations for transactions and to protect the history of operations.

Block header

The block header is a metadata structure which is used to link blocks in the blockchain. Block header has
a size of 80 bytes and consists of 6 fields:

Field Type sizeof Description Updated when

nVersion
unsigned

int
4

Block header

version

You upgrade the

software and it

specifies a new

version

hashPrevBlock
unsigned

char[]
32

Previous block

header hash, used

to link block

headers into list

New block is accepted

hashMerkleRoot
unsigned

char[]
32

Merkle tree hash,

used to link block

header and block

contents

Transactions pool is

updated

http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Merkle_tree

nTime
unsigned

int
4 Unix timestamp

Every few seconds for

Proof-of-Work, every

successful attempt for

Proof-of-Stake

nBits
unsigned

int
4

Compact

representation of

claimed proof

difficulty

The difficulty is

adjusted

nNonce
unsigned

int
4

Attempts counter

for Proof-of-Work

New Proof-of-Work hash

tried, or never

with Proof-of-Stake

Each block header is required to satisfy the claimed proof.

How is it supposed to work?

All miners have a copy of every unconfirmed valid transaction in own transactions pool. Normally mining
process is performed in the four stages:

1. Get a set of transactions from transactions pool;

2. Calculate a merkle tree hash for this set of transactions;

3. Create block header template and link it with this set of transactions using its merkle tree hash;

4. Try to find suitable proof hash for block header created before.

Getting a proof is quite a difficult operation, the difficulty depends on the current number of participants.
Each block header is linked to previous block header, so we have linked list of block headers, and a list
consistency is guaranteed by difficulty. This linked list is also known as blockchain.

What can be used as a proof?

The only required property of proof is that it's extremely difficult to obtain, but very easy to check. There
are a lot of proof concepts in existence, such as proof-of-work, proof-of-stake or proof-of-burn. 42-coin
supports usage of stake or work to provide suitable proof for block header.

Configuration file example

Please note that the following example isn't purposed for production use. It was placed here to help

describe the purpose of some of the settings.

42.conf configuration file. Lines beginning with # are comments.

Network-related settings:

Run on the test network instead of the real 42-coin network.

#testnet=0

Connect via a socks4 proxy - default none

#proxy=127.0.0.1:9050

Accepting incoming connections

#listen=1

Use as many addnode= settings as you like to connect to specific peers

#addnode=193.23.181.148

#addnode=91.235.143.61:4242

... or use as many connect= settings as you like to connect ONLY

http://en.wikipedia.org/wiki/Merkle_tree
https://github.com/novacoin-project/novacoin/wiki/Block-header
http://en.wikipedia.org/wiki/Linked_list
https://en.bitcoin.it/wiki/Proof_of_burn

to specific peers:

#connect=193.23.181.148

#connect=91.235.143.61:4242

Maximum number of inbound+outbound connections.

#maxconnections=

JSON-RPC options (for controlling a running 42d process)

You must set rpcuser and rpcpassword to secure the JSON-RPC api

#rpcuser=Ulysseys

#rpcpassword=YourSuperGreatPasswordNumber_DO_NOT_USE_THIS_OR_YOU_WILL_GET_ROBBED

How many seconds 42-coin will wait for a complete RPC HTTP request after the HTTP

connection is established.

#rpctimeout=30

By default, only RPC connections from localhost are allowed. Specify as many

rpcallowip= settings as you like to allow connections from other hosts (and you may

use * as a wildcard character):

#rpcallowip=10.1.1.34

#rpcallowip=192.168.1.*

Listen for RPC connections on this TCP port:

#rpcport=2121

You can use 42d to send commands to 42d running on another host using this option:

#rpcconnect=127.0.0.1

Use Secure Sockets Layer (also known as TLS or HTTPS) to communicate with 42d

#rpcssl=1

OpenSSL settings used when rpcssl=1

#rpcsslciphers=TLSv1+HIGH:!SSLv2:!aNULL:!eNULL:!AH:!3DES:@STRENGTH

#rpcsslcertificatechainfile=server.cert

#rpcsslprivatekeyfile=server.pem

Miscellaneous options

Pre-generate this many public/private key pairs, so wallet backups will be valid

for both prior transactions and several dozen future transactions.

#keypool=100

Data directory path, your keys store, copy of blockchain and unspent outputs index

are stored here.

#datadir=D:\42

Wallet file name

#wallet=wallet.dat

Checkpoints policy (possible values are strict and advisory)

#cppolicy=strict

Require confirmations for change (disabled by default)

#confchange=0

Enforce transaction scripts to use canonical PUSH operators

enforcecanonical=1

Exchanges and markets

Cryptopia.co.nz: 42/BTC, 42/DOGE, 42/LTC - Deposit Confirmations: 200 blocks, Trade Fee: 0.2%,

Withdrawal Fee: 0.00000002, Minimum trade: 0.00005 BTC

LiveCoin.net: 42/BTC, 42/USD, 42/ETH - Deposit Confirmations: 8 blocks, Trade Fee: 0.2-%, Withdrawal

Fee: 0.000001, Minimum trade: 0.0001 BTC

TradeSatoshi.com: 42/BTC, 42/BCH, 42/LTC, 42/DOGE - Deposit Confirmations: 12 blocks, Trade Fee:

0.2%, Withdrawal Fee: 0.00000002, Minimum trade: 0.000005 BTC

CoinsMarkets.com: 42/BTC - Deposit Confirmations: ? blocks, Trade Fee: 0.25%, Withdrawal Fee:

0.00000003, Minimum trade: 0.00001 42

NovaExchange.com: 42/BTC, 42/DOGE, 42/ETH, 42/LTC, 42/MOON, 42/KIC - Deposit Confirmations:

40 blocks, Trade Fee: 0.2%, Withdrawal Fee: 0.00000001, Minimum trade: 0.0000002 BTC

Useful Links

Official website: https://42-coin.org/

Official twitter: https://twitter.com/42newchain

Official thread on bitcointalk.org forum: https://bitcointalk.org/index.php?topic=1502028.0

GitHub repository: https://github.com/42-coin/42/

Wallet download: https://github.com/42-coin/42/releases

Blockchain explorer: https://chainz.cryptoid.info/42/, https://prohashing.com/explorer/42/

Paper/Brain Wallet Generator: https://42-address.github.io/

Capitalization: http://coinmarketcap.com/currencies/42-coin, https://bitscreener.com/coins/42-coin

Charts: https://bitinfocharts.com/42coin/

https://www.cryptopia.co.nz/Exchange?market=42_BTC
https://www.cryptopia.co.nz/Exchange?market=42_DOGE
https://www.cryptopia.co.nz/Exchange?market=42_LTC
https://www.livecoin.net/en/trade/index?currencyPair=FORTYTWO%2FBTC
https://www.livecoin.net/en/trade/index?currencyPair=FORTYTWO%2FUSD
https://www.livecoin.net/en/trade/index?currencyPair=FORTYTWO%2FETH
https://tradesatoshi.com/Exchange?market=42_BTC
https://tradesatoshi.com/Exchange?market=42_BCH
https://tradesatoshi.com/Exchange?market=42_LTC
https://tradesatoshi.com/Exchange?market=42_DOGE
https://coinsmarkets.com/trade-BTC-42.htm
https://novaexchange.com/market/BTC_42/
https://novaexchange.com/market/DOGE_42/
https://novaexchange.com/market/ETH_42/
https://novaexchange.com/market/LTC_42/
https://novaexchange.com/market/MOON_42/
https://novaexchange.com/market/KIC_42/
https://42-coin.org/
https://twitter.com/42newchain
https://bitcointalk.org/index.php?topic=1502028.0
https://github.com/42-coin/42/
https://github.com/42-coin/42/releases
https://chainz.cryptoid.info/42/
https://prohashing.com/explorer/42/
https://42-address.github.io/
http://coinmarketcap.com/currencies/42-coin
https://bitscreener.com/coins/42-coin
https://bitinfocharts.com/42coin/

	How is it supposed to work?
	What can be used as a proof?
	Configuration file example

