Sia: Simple Decentralized Storage

David Vorick
Nebulous Inc.
david@nebulouslabs.com

Luke Champine
Nebulous Inc.
luke@nebulouslabs.com

November 29, 2014

Abstract

The authors introduce Sia, a platform for decentral-
ized storage. Sia enables the formation of storage con-
tracts between peers. Contracts are agreements be-
tween a storage provider and their client, defining
what data will be stored and at what price. They
require the storage provider to prove, at regular in-
tervals, that they are still storing their client’s data.

Contracts are stored in a blockchain, making them
publicly auditable. In this respect, Sia can be viewed
as a Bitcoin derivative that includes support for such
contracts. Sia will initially be implemented as an alt-
coin, and later financially connected to Bitcoin via a
two-way peg.

1 Introduction

Sia is a decentralized cloud storage platform that in-
tends to compete with existing storage solutions, at
both the P2P and enterprise level. Instead of renting
storage from a centralized provider, peers on Sia rent
storage from each other. Sia itself stores only the stor-
age contracts formed between parties, defining the
terms of their arrangement. A blockchain, similar to
Bitcoin [1, 12], is used for this purpose.

By forming a contract, a storage provider (also
known as a host) agrees to store a client’s data, and
to periodically submit proof of their continued stor-
age until the contract expires. The host is compen-
sated for every proof they submit, and penalized for
missing a proof. Since these proofs are publicly veri-
fiable (and are publicly available in the blockchain),

network consensus can be used to automatically en-
force storage contracts. Importantly, this means that
clients do not need to personally verify storage proofs;
they can simply upload their file and let the network
do the rest.

We acknowledge that storing data on a single un-
trusted host guarantees little in the way of availabil-
ity, bandwidth, or general quality of service. Instead,
we recommend storing data redundantly across mul-
tiple hosts. In particular, the use of erasure codes
can enable high availability without excessive redun-
dancy.

Sia will initially be implemented as a blockchain-
based altcoin. Future support for a two-way peg
with Bitcoin is planned, as discussed in “Enabling
Blockchain Innovations with Pegged Sidechains” [5].
The Sia protocol largely resembles Bitcoin except for
the changes noted below.

2 General Structure

Sia’s primary departure from Bitcoin lies in its trans-
actions. Bitcoin uses a scripting system to enable a
range of transaction types, such as pay-to-public-key-
hash and pay-to-script-hash. Sia opts instead to use
an M—-of-N multi-signature scheme for all transac-
tions, eschewing the scripting system entirely. This
reduces complexity and attack surface.

Sia also extends transactions to enable the creation
and enforcement of storage contracts. Three exten-
sions are used to accomplish this: contracts, proofs,
and contract updates. Contracts declare the inten-
tion of a host to store a file with a certain size and

hash. They define the regularity with which a host
must submit storage proofs. Once established, con-
tracts can be modified later via contract updates.
The specifics of these transaction types are defined
in sections 4 and 5.

3 Transactions

A transaction contains the following fields:

Field Description

Version Protocol version number
Arbitrary Data | Used for metadata or otherwise
Miner Fee Reward given to miner

Inputs Incoming funds

Outputs Outgoing funds (optional)

File Contract See: File Contracts (optional)
Storage Proof | See: Proof of Storage (optional)
Signatures Signatures from each input

3.1 Inputs and Outputs

An output comprises a volume of coins. Each output
has an associated identifier, which is derived from the
transaction that the output appeared in. The ID of
output 7 in transaction t is defined as:

H(t||“output”||7)

where H is a cryptographic hashing function, and
“output” is a string literal. The block reward and
miner fees have special output IDs, given by:

H(H (Block Header)||“blockreward”)

Every input must come from a prior output, so an
input is simply an output ID.

Inputs and outputs are also paired with a set of
spend conditions. Inputs contain the spend conditions
themselves, while outputs contain their Merkle root
hash [2].

3.2 Spend Conditions

Spend conditions are properties that must be met
before coins are “unlocked” and can be spent. The

spend conditions include a time lock and a set of pub-
lic keys, and the number of signatures required. An
output cannot be spent until the time lock has ex-
pired and enough of the specified keys have added
their signature.

The spend conditions are hashed into a Merkle
tree, using the time lock, the number of signatures
required, and the public keys as leaves. The root hash
of this tree is used as the address to which the coins
are sent. In order to spend the coins, the spend con-
ditions corresponding to the address hash must be
provided. The use of a Merkle tree allows parties to
selectively reveal information in the spend conditions.
For example, the time lock can be revealed without
revealing the number of public keys or the number of
signatures required.

It should be noted that the time lock and number
of signatures have low entropy, making their hashes
vulnerable to brute-forcing. This could be resolved
by adding a random nonce to these fields, increasing
their entropy at the cost of space efficiency.

3.3 Signatures

Each input in a transaction must be signed. The cryp-
tographic signature itself is paired with an input ID,
a time lock, and a set of flags indicating which parts
of the transaction have been signed. The input ID in-
dicates which input the signature is being applied to.
The time lock specifies when the signature becomes
valid. Any subset of fields in the transaction can be
signed, with the exception of the signature itself (as
this would be impossible). There is also a flag to in-
dicate that the whole transaction should be signed,
except for the signatures. This allows for more nu-
anced transaction schemes.

The actual data being signed, then, is a concate-
nation of the time lock, input ID, flags, and every
flagged field. Every such signature in the transaction
must be valid for the transaction to be accepted.

4 File Contracts

A file contract is an agreement between a storage
provider and their client. At the core of a file contract

is the file’s Merkle root hash. To construct this hash,
the file is split into segments of constant size and
hashed into a Merkle tree. The root hash, along with
the total size of the file, can be used to verify storage
proofs.

File contracts also specify a duration, challenge fre-
quency, and payout parameters, including the reward
for a valid proof, the reward for an invalid or missing
proof, and the maximum number of proofs that can
be missed. The challenge frequency specifies how of-
ten a storage proof must be submitted, and creates
discrete challenge windows during which a host must
submit storage proofs (one proof per window). Sub-
mitting a valid proof during the challenge window
triggers an automatic payment to the “valid proof”
address (presumably the host). If, at the end of the
challenge window, no valid proof has been submitted,
coins are instead sent to the “missed proof” address
(likely an unspendable address in order to disincen-
tivize DoS attacks; see section 7.1). Contracts define
a maximum number of proofs that can be missed;
if this number is exceeded, the contract becomes in-
valid.

If the contract is still valid at the end of the con-
tract duration, it successfully terminates and any re-
maining coins are sent to the valid proof address.
Conversely, if the contract funds are exhausted be-
fore the duration elapses, or if the maximum number
of missed proofs is exceeded, the contract unsuccess-
fully terminates and any remaining coins are sent to
the missed proof address.

Completing or missing a proof results in a new
transaction output belonging to the recipient speci-
fied in the contract. The output ID of a proof depends
on the contract ID, defined as:

H (transaction|| “contract” ||7)
where i is the index of the contract within the trans-
action. The output ID of the proof can then be de-
termined from:

H (contract ID||outcome||W;)

Where W; is the window index, i.e. the number of
windows that have elapsed since the contract was

formed. The outcome is a string literal: either “valid-
proof” and “missedproof”; corresponding to the va-
lidity of the proof.
The output ID of a contract termination is defined
as:
H (contract ID||outcome)

Where outcome has the potential values “success-
fultermination” and “unsucessfultermination”, corre-
sponding to the termination status of the contract.

File contracts are also created with a list of “edit
conditions,” analogous to the spend conditions of a
transaction. If the edit conditions are fulfilled, the
contract may be modified. Any of the values can be
modified, including the contract funds, file hash, and
output addresses. As these modifications can affect
the validity of subsequent storage proofs, contract ed-
its must specify a future challenge window at which
they will become effective.

Theoretically, peers could create “micro-edit chan-
nels” to facilitate frequent edits; see discussion of
micropayment channels, section 7.3.

5 Proof of Storage

Storage proof transactions are periodically submitted
in order to fulfill file contracts. Each storage proof
targets a specific file contract. A storage proof does
not need to have any inputs or outputs; only a con-
tract ID and the proof data are required.

5.1 Algorithm

Hosts prove their storage by providing a segment of
the original file and a list of hashes from the file’s
Merkle tree. This information is sufficient to prove
that the segment came from the original file. Because
proofs are submitted to the blockchain, anyone can
verify their validity or invalidity. Each storage proof
uses a randomly selected segment. The random seed
for challenge window W; is given by:

H (contract ID||H(B;_1))

where B;_1 is the block immediately prior to the be-
ginning of W;.

If the host is consistently able to demonstrate pos-
session of a random segment, then they are very likely
storing the whole file. A host storing only 50% of the
file will be unable to complete approximately 50% of
the proofs.

5.2 Block Withholding Attacks

The random number generator is subject to manip-
ulation via block withholding attacks, in which the
attacker withholds blocks until they find one that
will produce a favorable random number. However,
the attacker has only one chance to manipulate the
random number for a particular challenge. Further-
more, withholding a block to manipulate the random
number will cost the attacker the block reward.

If an attacker is able to mine 50% of the blocks,
then 50% of the challenges can be manipulated. Nev-
ertheless, the remaining 50% are still random, so the
attacker will still fail some storage proofs. Specifically,
they will fail half as many as they would without the
withholding attack.

To protect against such attacks, clients can spec-
ify a high challenge frequency and large penalties for
missing proofs. These precautions should be sufficient
to deter any financially-motivated attacker that con-
trols less than 50% of the network’s hashing power.
Regardless, clients are advised to plan around poten-
tial Byzantine attacks, which may not be financially
motivated.

5.3 Closed Window Attacks

Hosts can only complete a storage proof if their proof
transaction makes it into the blockchain. Miners
could maliciously exclude storage proofs from blocks,
depriving themselves of transaction fees but forcing
a penalty on hosts. Alternatively, miners could ex-
tort hosts by requiring large fees to include storage
proofs, knowing that they are more important than
the average transaction. This is termed a closed win-
dow attack, because the malicious miner has artifi-
cially “closed the window.”

The defense for this is to use a large window size.
Hosts can reasonably assume that some percentage of

miners will include their proofs in return for a trans-
action fee. Because hosts consent to all file contracts,
they are free to reject any contract that they feel
leaves them vulnerable to closed window attacks.

6 Arbitrary Transaction Data

Each transaction has an arbitrary data field which
can be used for any type of information. Nodes will be
required to store the arbitrary data if it is signed by
any signature in the transaction. Nodes will initially
accept up to 64 KB of arbitrary data per block.

This arbitrary data provides hosts and clients with
a decentralized way to organize themselves. It can
be used to advertise available space or files seeking a
host, or to create a decentralized file tracker.

Arbitrary data could also be used to implement
other types of soft forks. This would be done by cre-
ating an “anyone-can-spend” output but with restric-
tions specified in the arbitrary data. Miners that un-
derstand the restrictions can block any transaction
that spends the output without satisfying the neces-
sary stipulations. Naive nodes will stay synchronized
without needing to be able to parse the arbitrary
data.

7 Storage Ecosystem

Sia relies on an ecosystem that facilitates decentral-
ized storage. Storage providers can use the arbitrary
data field to announce themselves to the network.
This can be done using standardized template that
clients will be able to read. Clients can use these an-
nouncements to create a database of potential hosts,
and form contracts with only those they trust.

7.1 Host Protections

A contract requires consent from both the storage
provider and their client, allowing the provider to re-
ject unfavorable terms or unwanted (e.g. illegal) files.
The provider may also refuse to sign a contract until
the entire file has been uploaded to them.

Contract terms give storage providers some flex-
ibility. They can advertise themselves as minimally

reliable, offering a low price and a agreeing to min-
imal penalties for losing files; or they can advertise
themselves as highly reliable, offering a higher price
and agreeing to harsher penalties for losing files. An
efficient market will optimize storage strategies.
Hosts are vulnerable to denial of service attacks,
which could prevent them from submitting storage
proofs or transferring files. It is the responsibility of
the host to protect themselves from such attacks.

7.2 Client Protections

Clients can use erasure codes, such as regenerating
codes [4], to safeguard against hosts going offline.
These codes typically operate by splitting a file into
n pieces, such that the file can be recovered from
any subset of m unique pieces. (The values of n and
m vary based on the specific erasure code and re-
dundancy factor.) Each piece is then encrypted and
stored across many hosts. This allows a client to at-
tain high file availability even if the average network
reliability is low. As an extreme example, if only 10
out of 100 pieces are needed to recover the file, then
the client is actually relying on the 10 most reliable
hosts, rather than the average reliability. Availabil-
ity can be further improved by rehosting file pieces
whose hosts have gone offline. Other metrics benefit
from this strategy as well; the client can reduce la-
tency by downloading from the closest 10 hosts, or
increase download speed by downloading from the 10
fastest hosts. These downloads can be run in parallel
to maximize available bandwidth.

7.3 Uptime Incentives

The storage proofs contain no mechanism to enforce
constant uptime. There are also no provisions that
require hosts to transfer files to clients upon request.
One might expect, then, to see hosts holding their
clients’ files hostage and demanding exorbitant fees
to download them. However, this attack is mitigated
through the use of erasure codes, as described in sec-
tion 7.2. The strategy gives clients the freedom to
ignore uncooperative hosts and work only with those
that are cooperative. As a result, power shifts from

the host to the client, and the “download fee” be-
comes an “upload incentive.”

In this scenario, clients offer a reward for being sent
a file, and hosts must compete to provide the best
quality of service. Clients may request a file at any
time, which incentivizes hosts to maximize uptime in
order to collect as many rewards as possible. Clients
can also incentivize greater throughput and lower la-
tency via proportionally larger rewards. Clients could
even perform random “checkups” that reward hosts
simply for being online, even if they do not wish to
download anything. However, we reiterate that up-
time incentives are not part of the Sia protocol; they
are entirely dependent on client behavior.

Payment for downloads is expected to be offered
through preexisting micropayment channels [11]. Mi-
cropayment channels allow clients to make many con-
secutive small payments with minimal latency and
blockchain bloat. Hosts could transfer a small seg-
ment of the file and wait to receive a micropayment
before proceeding. The use of many consecutive pay-
ments allows each party to minimize the risk of being
cheated. Micropayments are small enough and fast
enough that payments could be made every few sec-
onds without having any major effect on throughput.

7.4 Basic Reputation System

Clients need a reliable method for picking quality
hosts. Analyzing their history is insufficient, because
the history could be spoofed. A host could repeat-
edly form contracts with itself, agreeing to store large
“fake” files, such as a file containing only zeros. It
would be trivial to perform storage proofs on such
data without actually storing anything.

To mitigate this Sybil attack, clients can require
that hosts that announce themselves in the arbitrary
data section also include a large volume of time locked
coins. If 10 coins are time locked 14 days into the
future, then the host can be said to have created a
lock valued at 140 coin-days. By favoring hosts that
have created high-value locks, clients can mitigate the
risk of Sybil attacks, as valuable locks are not trivial
to create.

Each client can choose their own equation for pick-
ing hosts, and can use a large number of factors, in-

cluding price, lock value, volume of storage being of-
fered, and the penalties hosts are willing to pay for
losing files. More complex systems, such as those that
use human review or other metrics, could be imple-
mented out-of-band in a more centralized setting.

8 Siafunds

Sia is a product of Nebulous Incorporated. Nebulous
is a for-profit company, and Sia is intended to be-
come a primary source of income for the company.
Currency premining is not a stable source of income,
as it requires creating a new currency and tethering
the company’s revenue to the currency’s increasing
value. When the company needs to spend money, it
must trade away portions of its source of income. Ad-
ditionally, premining means that one entity has con-
trol over a large volume of the currency, and therefore
potentially large and disruptive control over the mar-
ket.

Instead, Nebulous intends to generate revenue from
Sia in a manner proportional to the value added by
Sia, as determined by the value of the contracts set
up between clients and hosts. This is accomplished
by imposing a fee on all contracts. When a contract
is created, 3.9% of the contract fund is removed and
distributed to the holders of siafunds. Nebulous Inc.
will initially hold approx. 88% of the siafunds, and the
early crowd-fund backers of Sia will hold the rest.

Siafunds can be sent to other addresses, in the same
way that siacoins can be sent to other addresses. They
cannot, however, be used to fund contracts or miner
fees. When siafunds are transferred to a new address,
an additional unspent output is created, containing
all of the siacoins that have been earned by the sia-
funds since their previous transfer. These siacoins are
sent to the same address as the siafunds.

9 Economics of Sia

The primary currency of Sia is the siacoin. The
supply of siacoins will increase permanently, and
all fresh supply will be given to miners as a block
subisdy. The first block will have 300,000 coins

minted. This number will decrease by 1 coin per
block, until a minimum of 30,000 coins per block is
reached. Following a target of 10 minutes between
blocks, the annual growth in supply is:

Year ‘ 1 2 3 4 5 8 20
Growth [90% 39% 21% 11.5% 4.4% 3.2% 2.3%

There are inefficiencies within the Sia incentive
scheme. The primary goal of Sia is to provide a
blockchain that enforces storage contracts. The min-
ing reward, however, is only indirectly linked to the
total value of contracts being created.

The siacoin, especially initially, is likely to have
high volatility. Hosts can be adversely affected if the
value of the currency shifts mid-contract. As a re-
sult, we expect to see hosts increasing the price of
long-term contracts as a hedge against volatility. Ad-
ditionally, hosts can advertise their prices in a more
stable currency (like USD) and convert to siacoin im-
mediately before finalizing a contract. Eventually, the
use of two-way pegs with other crypto-assets will give
hosts additional means to insulate themselves from
volatility.

10 Conclusion

Sia is a variant on the Bitcoin protocol that enables
decentralized file storage via cryptographic contracts.
These contracts can be used to enforce storage agree-
ments between clients and hosts. After agreeing to
store a file, a host must regularly submit storage
proofs to the network. The host will automatically
be compensated for storing the file regardless of the
behavior of the client.

Importantly, contracts do not require hosts to
transfer files back to their client when requested. In-
stead, an out-of-band ecosystem must be created to
reward hosts for uploading. Clients and hosts must
also find a way to coordinate; one mechanism would
be the arbitrary data field in the blockchain. Vari-
ous precautions have been enumerated which miti-
gate Sybil attacks and the unreliability of hosts.

Siafunds are used as a mechanism of generating
revenue for Nebulous Inc., the company responsible
for the release and maintenance of Sia. By using Sia-

funds instead of premining, Nebulous more directly
correlates revenue to actual use of the network, and
is largely unaffected by market games that malicious
entities may play with the network currency. Miners
may also derive a part of their block subsidy from
siafunds, with similar benefits. Long term, we hope
to add support for two-way-pegs with various curren-
cies, which would enable consumers to insulate them-
selves from the instability of a single currency.

We believe Sia will provide a fertile platform for
decentralized cloud storage in trustless environments.

References

[1] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System.

[2] R.C. Merkle, Protocols for public key cryptosystems, In Proc. 1980 Symposium on Security and Privacy,
IEEE Computer Society, pages 122-133, April 1980.

[3] Hovav Shacham, Brent Waters, Compact Proofs of Retrievability, Proc. of Asiacrypt 2008, vol. 5350, Dec
2008, pp. 90-107.

[4] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar, Optimal Ezact-Regenerating Codes for Distributed
Storage at the MSR and MBR Points via a Product-Matriz Construction.

[5] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew Miller, Andrew
Peolstra, Jorge Timon, Pieter Wuille, Enabling Blockchain Innovations with Pegged Sidechains.

[6] Andrew Poelstra, A Treatise on Altcoins.
[7] Gavin Andresen, O(1) Block Propagation, https://gist.github.com/gavinandresen/e20c3b5ald4b97{79ac2
[8] Gregory Maxwell, Deterministic Wallets, https://bitcointalk.org/index.php?topic=19137.0

[9] etotheipi, Ultimate blockchain compression w/ trust-free lite nodes,
https://bitcointalk.org/index.php?topic=88208.0

[10] Gregory Maxwell, Proof of Storage to make distributed resource consumption costly.
https://bitcointalk.org/index.php?topic=310323.0

[11] Mike Hearn, Rapidly-adjusted (micro)payments to a pre-determined party,
https://en.bitcoin.it/wiki/Contracts#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-
determined_party

[12] Bitcoin Developer Guide, https://bitcoin.org/en/developer-guide

